The JAK-STAT signaling pathway has been implicated in mediating biological responses induced by many cytokines. However, cytokines that promote distinct cellular responses often activate identical STAT proteins, thereby raising the question of how specificity is manifest within this signaling pathway. Here we report the generation and characterization of mice deficient in STAT1. STAT1-deficient mice show no overt developmental abnormalities, but display a complete lack of responsiveness to either IFN alpha or IFN gamma and are highly sensitive to infection by microbial pathogens and viruses. In contrast, these mice respond normally to several other cytokines that activate STAT1 in vitro. These observations document that STAT1 plays an obligate and dedicated role in mediating IFN-dependent biologic responses and reveal an unexpected level of physiologic specificity for STAT1 action.
This study demonstrates that endogenously produced interferon ␥ (IFN-␥) forms the basis of a tumor surveillance system that controls development of both chemically induced and spontaneously arising tumors in mice.
Langerhans cells (LCs) are antigen-presenting cells that reside in the epidermis of the skin and traffic to lymph nodes (LNs). The general role of these cells in skin immune responses is not clear because distinct models of LC depletion resulted in opposite conclusions about their role in contact hypersensitivity (CHS) responses. While comparing these models, we discovered a novel population of LCs that resides in the dermis and does not represent migrating epidermal LCs, as previously thought. Unlike epidermal LCs, dermal Langerin+ dendritic cells (DCs) were radiosensitive and displayed a distinct cell surface phenotype. Dermal Langerin+ DCs migrate from the skin to the LNs after inflammation and in the steady state, and represent the majority of Langerin+ DCs in skin draining LNs. Both epidermal and dermal Langerin+ DCs were depleted by treatment with diphtheria toxin in Lang-DTREGFP knock-in mice. In contrast, transgenic hLang-DTA mice lack epidermal LCs, but have normal numbers of dermal Langerin+ DCs. CHS responses were abrogated upon depletion of both epidermal and dermal LCs, but were unaffected in the absence of only epidermal LCs. This suggests that dermal LCs can mediate CHS and provides an explanation for previous differences observed in the two-model systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.