Gamma-ray bursts (GRBs) are fascinating events due to their panchromatic nature. We study optical plateaus in GRB afterglows via an extended search into archival data. We comprehensively analyze all published GRBs with known redshifts and optical plateaus observed by many ground-based telescopes (e.g., Subaru Telescope, RATIR) around the world and several space-based observatories such as the Neil Gehrels Swift Observatory. We fit 500 optical light curves, showing the existence of the plateau in 179 cases. This sample is 75% larger than the previous one, and it is the largest compilation so far of optical plateaus. We discover the 3D fundamental plane relation at optical wavelengths using this sample. This correlation is between the rest-frame time at the end of the plateau emission, T opt * , its optical luminosity, L opt, and the peak in the optical prompt emission, L peak,opt, thus resembling the three-dimensional (3D) X-ray fundamental plane (the so-called 3D Dainotti relation). We correct our sample for redshift evolution and selection effects, discovering that this correlation is indeed intrinsic to GRB physics. We investigate the rest-frame end-time distributions in X-rays and optical ( T opt * , T X * ), and conclude that the plateau is achromatic only when selection biases are not considered. We also investigate if the 3D optical correlation may be a new discriminant between optical GRB classes and find that there is no significant separation between the classes compared to the Gold sample plane after correcting for evolution.
<div>Transition metal compounds are traditionally considered to be challenging for standard quantum chemistry approximations like coupled cluster (CC) theory, which are usually employed to validate lower level methods like density functional theory (DFT). To explore this issue, we present a database of bond dissociation energies (BDEs) for 74 spin states of 69 diatomic species containing a 3d transition metal atom and a main group element, in the moderately sized def2-SVP basis. The presented BDEs appear to have an (estimated) 3σ error less than 1 kJ/mol relative to the exact solutions to the non-relativistic Born-Oppenheimer Hamiltonian. These benchmark values were used to assess the performance of a wide range of standard CC models, as the results should be beneficial for understanding the limitations of CC models for transition metal systems. We find that interactions between metals and monovalent ligands like hydride and fluoride are well described by CCSDT. Similarly, CCSDTQ appears to be adequate for bonds between metals and nominally divalent ligands like oxide and sulphide. However, interactions with polyvalent ligands like nitride and carbide are more challenging, with even CCSDTQ(P)<sub>Λ</sub> yielding errors on the scale of a few kJ/mol. We also find that many perturbative and iterative approximations to higher order terms either yield disappointing results, or actually worsen the performance relative to the baseline low level CC method, indicating that complexity does not always guarantee accuracy.</div>
This article examines the nature and impact of liberation theology in Latin America and considers prospects for the future. Liberation theology's fundamental ideas are explored, and the reasons for its emergence and appeal are considered in detail. As a system of ideas, liberation theology first appears during a period of great social change, ecclesiological debate, and political upheaval. The convergence of these elements helps explain the theology's appeal within the churches, makes sense of its characteristically activist identification with the poor, and helps account for the popular appeal of the new organizational structures it has inspired. These convergences also suggest possible constraints and the long-term political impact of this theology. Throughout the article I argue that analysis of impacts must go beyond the ideas of liberation theology to ask how and why such ideas are received and acted upon in concrete settings.
Gamma-ray burst (GRB) afterglow emission can be observed from sub-TeV to radio wavelengths, though only 6.6% of observed GRBs present radio afterglows. We examine GRB radio light curves (LCs) to look for the presence of radio plateaus resembling the plateaus observed at X-ray and optical wavelengths. We analyze 404 GRBs from the literature with observed radio afterglow and fit 82 GRBs with at least five data points with a broken power-law model, requiring four parameters. From these, we find 18 GRBs that present a break feature resembling a plateau. We conduct the first multiwavelength study of the Dainotti correlation between the luminosity L a and the rest-frame time of break T a * for those 18 GRBs, concluding that the correlation exists and resembles the corresponding correlation at X-ray and optical wavelengths after correction for evolutionary effects. We compare T a * for the radio sample with T a * values in X-ray and optical data, finding significantly later break times in the radio. We propose that this late break time and the compatibility in slope suggest either a long-lasting plateau or the passage of a spectral break in the radio band. We also correct the distribution of the isotropic energy E iso versus the rest-frame burst duration T * 90 for evolutionary effects and conclude that there is no significant difference between the T*90 distributions for the radio LCs with a break and for those without.
Venezuelan politics presents a puzzle to students of Latin America, and to anyone concerned with the comparative analysis of democratization and democracy. As the major countries of Latin America (and the majority of scholars) worked their way from authoritarianism through “transitions”to democracy and hopefully toward democracy’s consolidation, Venezuela moved in the opposite direction. After decades of political stability and social peace, beginning in 1987 Venezuela’s democratic order was shaken by widespread unrest and citizen disaffection, the decay of key parties and state institutions, attempted coups, and the impeachment and removal of the president in 1993.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.