Phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) is a major mechanism of desensitization of these receptors. GPCR activation of GRKs involves an allosteric site on GRKs distinct from the catalytic site. Although recent studies have suggested an important role of the N-and C-termini and domains surrounding the kinase active site in allosteric activation, the nature of that site and the relative roles of the RH domain in particular remain unknown. Based on evolutionary trace analysis of both the RH and kinase domains of the GRK family, we identified an important cluster encompassing helices 3, 9, and 10 in the RH domain in addition to sites in the kinase domain. To define its function, a panel of GRK5 and -6 mutants was generated and screened by intactcell assay of constitutive GRK phosphorylation of the  2 -adrenergic receptor (2AR), in vitro GRK phosphorylation of lightactivated rhodopsin, and basal catalytic activity measured by tubulin phosphorylation and autophosphorylation. A number of double mutations within helices 3, 9, and 10 reduced phosphorylation of the 2AR and rhodopsin by 50 to 90% relative to wild-type GRK, as well as autophosphorylation and tubulin phosphorylation. Based on these results, helix 9 peptide mimetics were designed, and several were found to inhibit rhodopsin phosphorylation by GRK5 with an IC 50 of ϳ30 M. In summary, our studies have uncovered previously unrecognized functionally important sites in the regulator of G-protein signaling homology domain of GRK5 and -6 and identified a peptide inhibitor with potential for specific blockade of GRK-mediated phosphorylation of receptors.To understand the mechanism underlying the activation of GRKs by the GPCRs, it is essential to identify functional sites in the GRKs involved in their activation. The serine/ threonine GRK family includes seven members, GRK1-7, classified into three subfamilies on the basis of their sequence homology: the rhodopsin kinase subfamily (GRK1 and -7), activities of which are restricted to the visual system; the -adrenergic receptor kinase subfamily (GRK2 and -3); and the GRK4 subfamily (GRK4 -6) (Krupnick and Benovic, 1998;Pitcher et al., 1998). Crystal structures have been determined for GRK2 in complex with the ␥ and G␣ q subunits of G proteins (Lodowski et al., 2003(Lodowski et al., , 2005(Lodowski et al., , 2006Tesmer et al., 2005), for GRK6 bound to 5Ј-adenylylimidodiphosphate (Lodowski et al., 2006), and recently for six crystal structures of rhodopsin kinase (Singh et al., 2008). These structures all seem to be in the inactive state. Thus, neither the activestate conformation of GRKs nor how they interface with GPCRs is known.Membrane localization and activation of GRKs are complex, involving several domains within the kinase. It was shown that the GRK2 N-terminal fragment (residues 45-178) coimmunoprecipitated with metabotropic glutamate receptor 1 (Dhami et al., 2002) and that a single mutation in
The ETV is available for download from our website at http://mammoth.bcm.tmc.edu/traceview/index.html. This webpage also links to sample trace results and a user manual that describes ET Viewer functions in detail.
Alzheimer’s disease (AD) is characterized clinically by progressive disturbances in memory, judgment, reasoning and olfaction, and pathologically by loss of synaptic integrity, extracellular accumulations of amyloid beta (Aβ) containing plaques, and intraneuronal tangles composed of hyperphosphorylated tau. Endolysosome dysfunction is one of the earliest pathological features of AD and cholesterol, a known risk factor for sporadic AD, is up-taken into neurons via receptor-mediated endocytosis. Accordingly, we determined the extent to which endolysosome dysfunction is associated with pathological features observed in rabbits fed cholesterol-enriched diet; a well-characterized model of sporadic AD. Olfactory bulbs were taken from rabbits fed for 12 weeks a diet enriched with 2% cholesterol and endolysosome morphology and function as well as AD-like pathology were investigated using enzyme activity measurements, immunoblotting and immunostaining techniques. In olfactory bulbs of rabbits fed cholesterol-enriched diet we observed enlarged endolysosomes containing increased accumulations of ApoB containing cholesterol and increased accumulations of synaptophysin, Aβ and phosphorylated tau. Cholesterol-enriched diet also decreased significantly specific enzyme activities of the endolysosome enzymes acid phosphatase and cathepsin D. Decreased synaptic area was present in olfactory bulbs of cholesterol-fed rabbits as indicated by significant decreases in protein expression levels of the synaptic area marker protein synaptophysin. Our results suggest strongly that elevated circulating cholesterol plays an important role in the pathogenesis of AD, and that alterations in endolysosome structure and function are associated with cholesterol diet-induced AD-like pathology.
About 15% of heterosexual couples in the USA suffer from infertility issues; male infertility accounts for ∼50% of all infertility cases and roughly 50% of male infertility is idiopathic. Increased levels of plasma cholesterol affect spermatogenesis and male fertility negatively, but by unclear mechanisms. Clearly, spermatogenesis occurs in immune-privileged seminiferous tubules that are protected by the blood-testis barrier (BTB), and BTB disruption results in sperm damage and male infertility. Accordingly, using rabbits fed a 2% cholesterol-enriched diet for 2, 4, and 6 wk to raise levels of plasma cholesterol, we tested the hypothesis that elevated levels of plasma cholesterol disrupt the BTB functionally and biochemically. The cholesterol-enriched diet increased lipid deposition dramatically and time-dependently in the seminiferous tubules and disrupted the BTB as evidenced by increased IgG staining within the seminiferous tubules. Total protein levels of the tight-junction proteins ZO-1 and occludin were increased in the seminiferous tubules of rabbits fed the cholesterol-enriched diet, and the distribution patterns of tight-junction proteins were markedly affected, including an increased accumulation of tight-junction proteins in endosomes. Disruption of the integrity of the BTB due to increased plasma levels of cholesterol might play a role in male infertility.
The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.