The bacterial flagellum consists of a long external filament connected to a membrane-embedded basal body at the cell surface by a short curved structure called the hook. In Salmonella enterica, the hook extends 55 nm from the cell surface. FliK, a secreted molecular ruler, controls hook length. Upon hook completion, FliK induces a secretionspecificity switch to filament-type substrate secretion. Here, we demonstrate that an infrequent ruler mechanism determines hook length. FliK is intermittently secreted during hook polymerization. The probability of the specificity switch is an increasing function of hook length. By uncoupling hook polymerization from FliK expression, we illustrate that FliK secretion immediately triggers the specificity switch in hooks greater than the physiological length. The experimental data display excellent agreement with a mathematical model of the infrequent ruler hypothesis. Merodiploid bacteria expressing simultaneously short and long ruler variants displayed hook-length control by the short ruler, further supporting the infrequent ruler model. Finally, the velocity of FliK secretion determines the probability of a productive FliK interaction with the secretion apparatus to change secretion substrate specificity.
A molecular ruler, FliK, controls the length of the flagellar hook. FliK measures hook length and catalyzes the secretion-substrate specificity switch from rod-hook substrate specificity to late substrate secretion, which includes the filament subunits. Here, we show normal hook-length control and filament assembly in the complete absence of the C-ring thus refuting the previous “cup” model for hook-length control. Mutants of C-ring components, which are reported to produce short hooks, show a reduced rate of hook-basal body assembly thereby allowing for a premature secretion-substrate specificity switch. Unlike fliK null mutants, hook-length control in an autocleavage-defective mutant of flhB, the protein responsible for the switch to late-substrate secretion, is completely abolished. FliK deletion variants that retain the ability to measure hook length are secreted thus demonstrating that FliK directly measures rod-hook length during the secretion process. Finally, we present a unifying model accounting for all published data on hook-length control in which FliK acts as a molecular ruler that takes measurements of rod-hook length while being intermittently secreted during the assembly process of the hook-basal body complex.
The type-III secretion (T3S) systems of bacteria are part of selfassembling nanomachines: the bacterial flagellum that enables cells to propel themselves through liquid and across hydrated surfaces, and the injectisome that delivers pathogenic effector proteins into eukaryotic host cells. Although the flagellum and injectisome serve different purposes, they are evolutionarily related and share many structural similarities. Core features to these T3S systems are intrinsic length control mechanisms for external cellular projections: the hook of the flagellum and the injectisome needle. We present evidence that the Spi-1 injectisome, like the Salmonella flagellar hook, uses a secreted molecular ruler, InvJ, to determine needle length. This result supports a universal length control mechanism using molecular rulers for T3S systems.type-III secretion | injectisome | molecular ruler | length control |
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.