The efficient extraction of local high-resolution content from massive amounts of imaging data remains a serious and unsolved problem in studies of complex biological tissues. Here we present DeepProjection, a trainable projection algorithm based on deep learning. This algorithm rapidly and robustly extracts image content contained in curved manifolds from time-lapse recorded 3D image stacks by binary masking of background content, stack by stack. The masks calculated for a given movie, when predicted, e.g., on fluorescent cell boundaries on one channel, can subsequently be applied to project other fluorescent channels from the same manifold. We apply DeepProjection to follow the dynamic movements of 2D-tissue sheets in embryonic development. We show that we can selectively project the amnioserosa cell sheet during dorsal closure in Drosophila melanogaster embryos and the periderm layer in the elongating zebrafish embryo while masking highly fluorescent out-of-plane artifacts.
The efficient extraction of image data from curved tissue sheets embedded in volumetric imaging data remains a serious and unsolved problem in quantitative studies of embryogenesis. Here we present DeepProjection (DP), a trainable projection algorithm based on deep learning. This algorithm is trained on user-generated training data to locally classify the 3D stack content and rapidly and robustly predict binary masks containing the target content, e.g., tissue boundaries, while masking highly fluorescent out-of-plane artifacts. A projection of the masked 3D stack then yields background-free 2D images with undistorted fluorescence intensity values. The binary masks can further be applied to other fluorescent channels or to extract the local tissue curvature. DP is designed as a first processing step than can be followed, for example, by segmentation to track cell fate. We apply DP to follow the dynamic movements of 2D-tissue sheets during dorsal closure in Drosophila embryos and of the periderm layer in the elongating Danio embryo. DeepProjection is available as fully documented Python package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.