<p>Stylolite, fracture and fault networks are important fluid pathways, especially in low permeable rocks such as limestone and therefore important for subsurface applications including geothermal energy production. These systems grow in both time and space and have a given correlation length. Below the correlation length the system becomes saturated and shows a given scaling, for example in roughness for stylolites. Whereas above the correlation length the roughness or width of the growing system becomes constant. The position of this length varies with time and space whilst also being influenced by the system size. This becomes important when the systems connect, for example fractures that grow and merge together such that they have a given size. In this contribution we show with numerical simulations and natural examples how stylolite, fracture and fault networks scale in time and space, how their correlation length is evolving and how they become connected. We discuss the implications for scaling of larger networks as well as implications for deformation and fluid flow.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.