Tonal harmony is one of the central organization systems of Western music. This article characterizes the statistical foundations of tonal harmony based on the computational analysis of expert annotations in a large corpus. Using resampling methods, this study shows that 1) the rank-frequency distribution of chords resembles a power law, i.e. few chords govern a large proportion of the data; 2) chord transitions are referential and chord predictability is significantly affected by distinguished chord features; 3) tonal harmony conveys directedness in time; and 4) tonal harmony operates differently at the hierarchical levels of chords and keys. These results serve to characterize tonal harmony on empirical grounds and advance the methodological state-of-the-art in digital musicology.
Tonality is one of the most central theoretical concepts for the analysis of Western classical music. This study presents a novel approach for the study of its historical development, exploring in particular the concept of mode. Based on a large dataset of approximately 13,000 musical pieces in MIDI format, we present two models to infer both the number and characteristics of modes of different historical periods from first principles: a geometric model of modes as clusters of musical pieces in a non-Euclidean space, and a cognitively plausible Bayesian model of modes as Dirichlet distributions. We use the geometric model to determine the optimal number of modes for five historical epochs via unsupervised learning and apply the probabilistic model to infer the characteristics of the modes. Our results show that the inference of four modes is most plausible in the Renaissance, that two modes–corresponding to major and minor–are most appropriate in the Baroque and Classical eras, whereas no clear separation into distinct modes is found for the 19th century.
This paper studies the “integration” problem of nineteenth-century harmony—the question whether the novel chromatic chord transitions in this time are a radical break from or a natural extension of the conventional diatonic system. We examine the connections between the local behavior of voice leading among diatonic triads and their generalizations on one hand, and the global properties of voice-leading spaces on the other. In particular, we aim to identify those neo-Riemannian chord connections which can be integrated into the diatonic system and those which cannot. Starting from Jack Douthett’s approach of filtered point symmetries, we generalize diatonic triads as second-order Clough-Myerson scales and compare the resulting Douthett graph to the respective Betweenness graph. This paper generally strengthens the integrationist position, for example by presenting a construction of the hexatonic and octatonic cycles that uses the principle of minimal voice leading in the diatonic system. At the same time it provides a method to detect chromatic wormholes, i.e. parsimonious connections between diatonic chords, which are not contiguous in the system of second order Clough-Myerson scales.
Many structural aspects of music, such as tonality, can be expressed using hierarchical representations. In music analysis, so-called keyscapes can be used to map a key estimate (e.g., C major, F minor) to each subsection of a piece of music, thus providing an intuitive visual representation of its tonality, in particular of the hierarchical organization of local and global keys. However, that approach is limited in that the mapping relies on assumptions that are specific to common-practice tonality, such as the existence of 24 major and minor keys. This limitation can be circumvented by applying the discrete Fourier transform (DFT) to the tonal space. The DFT does not rely on style-specific theoretical assumptions but only presupposes an encoding of the music as pitch classes in 12-tone equal temperament. We introduce wavescapes, a novel visualization method for tonal hierarchies that combines the visual representation of keyscapes with music analysis based on the DFT. Since wavescapes produce visual analyses deterministically, a number of potential subjective biases are removed. By concentrating on one or more Fourier coefficients, the role of the analyst is thus focused on the interpretation and contextualization of the results. We illustrate the usefulness of this method for computational music theory by analyzing eight compositions from different historical epochs and composers (Josquin, Bach, Liszt, Chopin, Scriabin, Webern, Coltrane, Ligeti) in terms of the phase and magnitude of several Fourier coefficients. We also provide a Python library that allows such visualizations to be easily generated for any piece of music for which a symbolic score or audio recording is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.