published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In this work, micro- and macroporosity of materials processed with 70% Hydroxyapatite (HAP) and 30% beta-tricalcium phosphate (beta-TCP) were controlled by sintering temperature and porogen addition, respectively. Porosity was quantified by scanning electron microscopy (pore size) and mercury intrusion porosimetry (interconnection between pores). The content of macrointerconnections and their size were dependent on porogen content, shape, and size. Mechanical properties (compressive strength) were strongly dependent on macroporosity size and content, on the basis of exponential laws, whereas microporosity ratio was less influent. Relying on those results, three types of materials with contrasting porous morphologies were processed and assessed in vitro, in primary culture of human osteoblasts and fibroblasts. With both types of cells, an exponential cellular growth was effective. Cells colonized the surface of the materials, bridging macroporosity, before colonizing the depth of the materials. Cell migration across and into macroporosity occurred via the emission by the cells of long cytoplasmic extensions that hanged on microporosity. Both macroporosity and macrointerconnectivity size influenced the penetration of cells. An interconnection size of 15 microm appeared to be effective to support this invasion without bringing down mechanical strength.
Checkpoints that limit stem cell self-renewal in response to DNA damage can contribute to cancer protection but may also promote tissue aging. Molecular components that control stem cell responses to DNA damage remain to be delineated. Using in vivo RNAi screens, we identified basic leucine zipper transcription factor, ATF-like (BATF) as a major component limiting self-renewal of hematopoietic stem cells (HSCs) in response to telomere dysfunction and γ-irradiation. DNA damage induces BATF in a G-CSF/STAT3-dependent manner resulting in lymphoid differentiation of HSCs. BATF deletion improves HSC self-renewal and function in response to γ-irradiation or telomere shortening but results in accumulation of DNA damage in HSCs. Analysis of bone marrow from patients with myelodysplastic syndrome supports the conclusion that DNA damage-dependent induction of BATF is conserved in human HSCs. Together, these results provide experimental evidence that a BATF-dependent differentiation checkpoint limits self-renewal of HSCs in response to DNA damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.