Transseries expansions build upon ordinary power series methods by including additional basis elements such as exponentials and logarithms. Alternative summation methods can then be used to ‘resum’ series to obtain more efficient approximations, and have been successfully widely applied in the study of continuous linear and nonlinear, single and multidimensional problems. In particular, a method known as transasymptotic resummation can be used to describe continuous behaviour occurring on multiple scales without the need for asymptotic matching. Here we apply transasymptotic resummation to discrete systems and show that it may be used to naturally and efficiently describe discrete delayed bifurcations, or ‘canards’, in singularly-perturbed variants of the logistic map which contain delayed period-doubling bifurcations. We use transasymptotic resummation to approximate the solutions, and describe the behaviour of the solution across the bifurcations. This approach has two significant advantages: it may be applied in systematic fashion even across multiple bifurcations, and the exponential multipliers encode information about the bifurcations that are used to explain effects seen in the solution behaviour.
We use exponential asymptotics to match the late time temperature evolution of an expanding conformally invariant fluid to its early time behaviour. We show that the rich divergent transseries asymptotics at late times can be used to interpolate between the two regimes with exponential accuracy using the well-established methods of hyperasymptotics, Borel resummation and transasymptotics. This approach is generic and can be applied to any interpolation problem involving a local asymptotic transseries expansion as well as knowledge of the solution in a second region away from the expansion point. Moreover, we present global analytical properties of the solutions such as analytic approximations to the locations of the square-root branch points, exemplifying how the summed transseries contains within itself information about the observable in regions with different asymptotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.