There is neuroscientific evidence to suggest that imitation between humans is goal-directed. Therefore, when performing multiple tasks, we internally define an unknown optimal policy to satisfy multiple goals. This work presents a method to transfer a complex behavior composed by a sequence of multiple tasks from a human demonstrator to a humanoid robot. We defined a multi-objective reward function as a measurement of the goal optimality for both human and robot, which is defined in each subtask of the global behavior. We optimize a sequential policy to generate whole-body movements for the robot that produces a reward profile which is compared and matched with the human reward profile, producing an imitative behavior. Furthermore, we can search in the proximity of the solution space to improve the reward profile and innovate a new solution, which is more beneficial for the humanoid. Experiments were carried out in a real humanoid robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.