We demonstrate optical trapping and manipulation of aerosols with an optical bottle beam generated by the moiré techniques. We observe stable trapping and back-and-forth transportation of a variety of absorbing carbon particles suspended in air, ranging from clusters of nanosized buckminsterfullerene C₆₀ to micrometer-sized carbon powders.
The fluctuation–dissipation theorem (FDT) has been proposed as a method of calculating the mean response of the atmosphere to small external perturbations. This paper explores the application of the theory under time and space constraints that approximate realistic conditions. To date, most applications of the theory in the climate context used univariate, low-dimensional-state representations of the climate system and an arbitrarily long sample size.
The authors explore high-dimensional multivariate FDT operators and the lower bounds of sample size needed to construct skillful operators. It is shown that the skill of the operator depends on the selection of variables and features representing the climate system and that these features change once memory (slab ocean) is added to the system.
In addition, it is found that the FDT operator has skill in estimating the response to realistic sea surface temperature (SST) patterns, such as El Niño–Southern Oscillation (ENSO), despite the fact that these patterns were not part of the data used to produce the operator. The response of clouds is also studied; for variables that represent cloud properties, the decrease in skill in relation to decrease in sample size still maintains the key features of the response.
A hermetic laser-assisted glass frit encapsulation, at a process temperature of 120 °C, was developed for perovskite solar cell application. The hermeticity and long-term stability of the sealing was examined based on standard tests for photovoltaic (PV) applications. Encapsulations using fluorine doped tin oxide (FTO)-coated glass substrates displayed 8.93 × 10 −8 atm • cm 3 • s −1 air leak rate after five cycles of a humidity-freeze test according to the IEC61646 standard; a rate lower than the reject limit of the MIL-STD-883 standard test for fine leaks. Devices sealed with a TiO 2 blocking layer and FTO scribing-denoted as an empty perovskite solar cell-showed that the encapsulation is compatible with the various thermal coefficient of expansion regions of perovskite solar cells (PSCs). The applicability of the MIL-STD-883 standard was studied in detail and it was concluded that a new method is required to measure the fine helium leak rate of devices with cavity sizes larger than 5.5 × 5.5 cm 2 . The developed sealing process is scalable for larger devices; therefore, it guarantees a new step forward for the industrialization of PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.