Human cytomegalovirus (HCMV) is a widely distributed herpesvirus that causes significant morbidity in immunocompromised hosts. Inhibitors of viral DNA replication are available, but adverse effects limit their use. Alternative antiviral strategies may include inhibition of entry. We show that soluble derivatives of the platelet-derived growth factor receptor alpha (PDGFR-alpha), a putative receptor of HCMV, can inhibit HCMV infection of various cell types. A PDGFR-alpha-Fc fusion protein binds to and neutralizes cell-free virus particles at an EC50 of 10–30 ng/ml. Treatment of particles reduced both attachment to and fusion with cells. In line with the latter, PDGFR-alpha-Fc was also effective when applied postattachment. A peptide scan of the extracellular domain of PDGFR-alpha identified a 40mer peptide that inhibits infection at an EC50 of 1–2 nmol/ml. Both, peptide and fusion protein, were effective against various HCMV strains and are hence promising candidates for the development of novel anti-HCMV therapies.
Human cytomegalovirus (HCMV), a betaherpesvirus, can cause life-threatening disease in immunocompromised individuals. Viral envelope glycoproteins that mediate binding to and penetration into target cells have been identified previously. In contrast, cellular proteins supporting HCMV during entry are largely unknown. In order to systematically identify host genes affecting initial steps of HCMV infection, a targeted RNA interference screen of 96 cellular genes was performed in endothelial cells by use of a virus strain expressing the full set of known glycoprotein H and L (gH/gL) complexes. The approach yielded five proviral host factors from different protein families and eight antiviral host factors, mostly growth factor receptors. The tetraspanin CD151 was uncovered as a novel proviral host factor and was analyzed further. Like endothelial cells, fibroblasts were also less susceptible to HCMV infection after CD151 depletion. Virus strains with different sets of gH/gL complexes conferring either broad or narrow cell tropism were equally impaired. Infection of CD151-depleted cells by a fluorescent virus with differentially labeled capsid and envelope proteins revealed a role of CD151 in viral penetration but not in adsorption to the cell. In conclusion, the tetraspanin CD151 has emerged as a novel host factor in HCMV entry and as a putative antiviral target. IMPORTANCEAt present, the events at the virus-cell interface and the cellular proteins involved during the HCMV entry steps are scarcely understood. In this study, several host factors with putative roles in this process were identified. The tetraspanin CD151 was discovered as a previously unrecognized proviral host factor for HCMV and was found to support viral penetration into the target cells. The findings of this study shed light on the cellular contribution during the initial steps of HCMV infection and open a new direction in HCMV research.
Infection of vascular endothelial cells (ECs) is assumed to contribute to dissemination of human cytomegalovirus (HCMV). Investigation of virus-host interactions in ECs such as human umbilical vein endothelial cells (HUVECs) is limited due to the low maximal passage numbers of these primary cells. We tested a conditionally immortalized EC line (HEC-LTT) and a permanent cell line (EA.hy926) for their susceptibility to HCMV infection. Both cell lines resembled HUVECs in that they allowed for entry and immediate early protein expression of highly endotheliotropic HCMV strains but not of poorly endotheliotropic strains, rendering them suitable for analysis of the viral entry mechanism in ECs. The late phase of viral replication and release, however, was supported by growth-controlled HEC-LTT cells but not by EA.hy926 cells. HEC-LTT cells support both the early and late phase of viral replication and release infectious progeny virus at titers comparable to primary HUVECs; thus, the HEC-LTT cell line is a cell culture model representing the full viral replicative cycle of HCMV in ECs. The implementation of permanent HEC-LTT and EA.hy926 cell lines in HCMV research will facilitate long-term approaches that are not feasible in primary HUVECs.
Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly inhibited infections of both HPV16 and HCMV. Although CD9 was newly identified as a key cellular factor for HPV16 infection, the recombinant CD9 C-terminal peptide had no effect on infection. Based on the determined half-maximal inhibitory concentration (IC50), we classified CD63 and CD151 C-terminal peptides as moderate to potent inhibitors of HPV16 infection in HeLa and HaCaT cells, and in EA.hy926, HFF (human foreskin fibroblast) cells, and HEC-LTT (human endothelial cell-large T antigen and telomerase) cells for HCMV, respectively. These results indicate that HPV16 and HCMV share similar cellular requirements for their entry into host cells and reveal the necessity of the cytoplasmic CD151 and CD63 C-termini in virus infections. Furthermore, this highlights the suitability of these peptides for functional investigation of tetraspanin domains and as inhibitors of pathogen infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.