Understanding the changes in peanut (Arachis hypogaea L.) anther lipidome under heat stress (HT) will aid in understanding the mechanisms of heat tolerance. We profiled the anther lipidome of seven genotypes exposed to ambient temperature (AT) or HT during flowering. Under AT and HT, the lipidome was dominated by phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TAG) species (> 50% of total lipids). Of 89 lipid analytes specified by total acyl carbons:total carbon–carbon double bonds, 36:6, 36:5, and 34:3 PC and 34:3 PE (all contain 18:3 fatty acid and decreased under HT) were the most important lipids that differentiated HT from AT. Heat stress caused decreases in unsaturation indices of membrane lipids, primarily due to decreases in highly-unsaturated lipid species that contained 18:3 fatty acids. In parallel, the expression of Fatty Acid Desaturase 3-2 (FAD3-2; converts 18:2 fatty acids to 18:3) decreased under HT for the heat-tolerant genotype SPT 06-07 but not for the susceptible genotype Bailey. Our results suggested that decreasing lipid unsaturation levels by lowering 18:3 fatty-acid amount through reducing FAD3 expression is likely an acclimation mechanism to heat stress in peanut. Thus, genotypes that are more efficient in doing so will be relatively more tolerant to HT.
Late and early leaf spot, respectively caused by Nothopassalora personata and Passalora arachidicola, are damaging diseases of peanut (Arachis hypogaea) capable of defoliating canopies and reducing yield. Although one of these diseases may be more predominant in a given area, both are important on a global scale. To assist informed management decisions and quantify relationships between end-of-season defoliation and yield loss, meta-analyses were conducted over 140 datasets meeting established criteria. Slopes of proportion yield loss with increasing defoliation were estimated separately for Virginia and runner market type cultivars. Yield loss for Virginia types was described by an exponential function over the range of defoliation levels, with a loss increase of 1.2 to 2.2% relative to current loss levels per additional percent defoliation. Results for runner market type cultivars showed yield loss to linearly increase 2.2 to 2.8% per 10% increase in defoliation for levels up to approximately 95% defoliation, after which the rate of yield loss was exponential. Defoliation thresholds to prevent economic yield loss for Virginia and runner types were estimated at 40 and 50%, respectively. Although numerous factors remain important in mitigating overall yield losses, the integration of these findings should aid recommendations about digging under varying defoliation intensities and peanut maturities to assist in minimizing yield losses.
Phomopsis cane and leaf spot on Vitis spp. (grape) is currently understood to be monocyclic, with primary inoculum only being produced early in the growing season. However, of the few published studies pertaining to sporulation of Phomopsis viticola, none specifically examined rachises, and none were designed to determine when infected tissues become capable of sporulation. The objective of these studies was to determine when grape shoots, canes, and rachises infected with P. viticola develop the capacity to sporulate, and to determine the time period during which those tissues remain capable of sporulation. Starting in 2009 and 2010, infected first-year shoots and rachises were collected biweekly throughout the growing season, into the dormant season, and into the following growing season. Tissues were collected from ‘Catawba,’ ‘Concord,’ and ‘Reliance’ vineyards. Samples were observed for sporulation after 48 h of incubation in a moist chamber at 23°C; the magnitude of the conidia production under these optimal conditions was considered the sporulation potential. For infections that occurred in 2009 and 2010, the production of conidia was not observed until after harvest. In the year following infection, sporulation potential was found from about bud break until shortly after the end of bloom. There was a generally consistent temporal pattern to relative sporulation potential across sampled vineyards, years, and grape tissues (rachises and canes), described by a modified β model, with peak sporulation potential occurring around 16 May. These results confirmed that Phomopsis cane and leaf spot is a monocyclic disease and support control recommendations for use of fungicides in spring.
Prohexadione calcium, a plant growth regulator, is commonly used on virginia market type peanut ( Arachis hypogaea L.) cultivars to manage excessive vine growth and improve digging efficiency. However, use of prohexadione calcium on runner market type cultivars has been minimal. The objective of this research was to evaluate prohexadione calcium on virginia and runner market type peanut cultivars at multiple rates in small-plot (17 site years) and on-farm (5 site years) experiments. Applications of prohexadione calcium were at the manufacturer’s recommended use rate of 140 g/ha (1x), 105 g/ha (0.75x), and 70 g/ha (0.5x) rates. A non-treated control was also included in all experiments. Cultivar and treatment responses were evaluated based on mainstem height, yield, total sound mature kernels, and return on investment. Plants treated with prohexadione calcium had greater row visibility based on a 1-10 row visibility. Plant main stem heights were often shortened when prohexadione calcium was applied compared to the control, although response varied by location and by year. Average mainstem heights were 26 cm for non-treated plots and 23 cm for prohexadione calcium treated plots across all virginia market type small plot experiments. Prohexadione calcium did not significantly increase yield at any rate in any small plot experiments regardless of rate. Reduced rates of prohexadione calcium significantly increased yield in all the large on-farm experiments compared to the control. Yield increases ranged from 453 to 731 kg/ha for all prohexadione calcium treatments compared to the control across all large plot on-farm experiments. The greatest return on investment was the 0.75x rate resulting in an increase in revenue of $210 ha -1 . With an increase in yield and return on investment in all large plot on-farm experiments and not in small plot experiments no matter the market type, it is assumed that the growth and yield response to prohexadione calcium may be more pronounced where soil variability is greater, affecting growth, digging, and yield potential. Prohexadione calcium can be beneficial in virginia market type and runner market type peanut cultivars to decrease vine growth and increase yield.
Controlled-environment studies were conducted to examine effects of temperature (T) and wetness duration (W) on the sporulation rate of Phomopsis viticola on infected grape canes and to determine effects of interrupted wetness duration (IWD) on sporulation. A split-plot design was used to determine T and W effects, with T (5, 12, 15, 18, 20, 22, 25, 28, and 35°C) as the whole-plot and W (11, 23, 35, 47, and 71 h) as the subplot. Linear and nonlinear mixed models were fitted to the data. Lower and upper limits of sporulation were estimated to be 4 and 36°C, respectively, based on the modeling results, optimum sporulation was near 21°C, and sporulation increased monotonically with increasing wetness duration. Of the examined models, a generalization of the Analytis Beta model fit the data best, based on a collection of goodness-of-fit statistical criteria. To determine effects of IWD, a split-plot was used, with T (12, 15, and 20°C) as the whole-plot and IWD (0, 2, 4, 8, 12, and 24 h) as the subplot. Generally, sporulation declined with increasing IWD. An IWD of 8 h or more resulted in significantly and substantially less sporulation compared to the control (0 h IWD) (P < 0.01). Temporal patterns of spore density in the field were determined using a repeated-measures design, in which spore density and environmental data were measured in the vineyard during and following individual rain events over 3 years. The developed model from the controlled-environment study, coupled with a time-of-season weight function and a dispersal index (based on total rain per rain episode), predicted the trend in spore density over time reasonably well, although the total magnitude of spore density could not be predicted because the density of lesions was not known. Results can be used for improving the accuracy of a disease warning system that currently only considers infection of grapes by P. viticola.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.