All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease.
The interrelated programs essential for cellular fitness in the face of stress are critical to understanding tumorigenesis, neurodegeneration, and aging. However, modelling the combinatorial landscape of stresses experienced by diseased cells is challenging, leaving functional relationships within the global stress response network incompletely understood. Here, we leverage genome-scale fitness screening data from 625 cancer cell lines, each representing a unique biological context, to build a network of "coessential" gene relationships centered around master regulators of the response to proteotoxic, oxidative, hypoxic, and genotoxic stress. This approach organizes the stress response into functional modules, identifies genes connecting distinct modules, and reveals mechanisms underlying cellular dependence on individual modules. As an example of the power of this approach, we discover that the previously unannotated HAPSTR (C16orf72) promotes resilience to diverse stressors as a stress-inducible regulator of the E3 ligase HUWE1. Altogether, we present a broadly applicable framework and interactive tool (http://fireworks.mendillolab.org/) to interrogate biological networks using unbiased genetic screens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.