Environments that are crowded with larvae of the fruit fly, Drosophila melanogaster, exhibit a temporal deterioration in quality as waste products accumulate and food is depleted. We show that natural selection in these environments can maintain a genetic polymorphism with one group of genotypes specializing on the early part of the environment and a second group specializing on the late part. These specializations involve trade-offs in fitness components. The early types emerge first from crowded cultures and have high larval feeding rates, which are positively correlated with competitive ability but exhibit lower absolute viability than the late phenotype, especially in food contaminated with the nitrogenous waste product, ammonia. The late emerging types have reduced feeding rates but higher absolute survival under conditions of severe crowding and high levels of ammonia. Organisms that experience temporal variation within a single generation are not uncommon, and this model system provides some of the first insights into the evolutionary forces at work in these environments.
Drosophila melanogaster populations subjected to extreme larval crowding (CU lines) in our laboratory have evolved higher larval feeding rates than their corresponding controls (UU lines), It has been suggested that this genetically based behavior may involve an energetic cost, which precludes natural selection in a density-regulated population to simultaneously maximize food acquisition and food conversion into biomass. If true, this stands against some basic predictions of the general theory of density-dependent natural selection. Here we investigate the evolutionary consequences of density-dependent natural selection on growth rate and body size in D. melanogaster. The CU populations showed a higher growth rate during the postcritical period of larval life than UU populations, but the sustained differences in weight did not translate into the adult stage. The simplest explanation for these findings (that natural selection in a crowded larval environment favors a faster food acquisition for the individual to attain the same final body size in a shorter period of time) was tested and rejected by looking at the larva-to-adult development times. Larvae of CU populations starved for different periods of time develop into comparatively smaller adults, suggesting that food seeking behavior in a food depleted environment carries a higher cost to these larvae than to their UU counterparts. The results have important implications for understanding the evolution of body size in natural populations of Drosophila, and stand against some widespread beliefs that body size may represent a compromise between the conflicting effects of genetic variation in larval and adult performance,
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology.Abstract. Population stability ultimately depends on the life-history characteristics of individuals; thus, it may be indirectly affected by natural selection acting on various lifehistory traits. This study investigates the efficacy of natural selection in molding the stability of populations living at an unstable equilibrium. The stability of laboratory populations of Drosophila is affected by the relative amount of food given to larvae and adults. Environments with high larval food levels and low adult food levels (HL environments) tend to have asymptotically stable carrying capacities. Environments with low larval food levels and high adult food levels (LH environments) tend to exhibit unstable dynamics, like population cycles. In this experiment, 20 populations were created from two different types of source populations. Five of the source populations had evolved for 71 generations under crowded larval conditions and uncrowded adult conditions (CU populations), while the other five source populations had evolved for a comparable time in uncrowded larval and uncrowded adult conditions (UU). In this study, five replicate CU and UU populations each were placed in both the HL and LH environments, and total adult population counts and adult biomass were recorded for 45 generations. Every five generations, we also estimated the density-dependent fecundity function in each population, since population stability depends critically on the shape of this function. While we could document phenotypic evolution in these populations for several characters due to density-dependent natural selection, there was no detectable change in the population stability characteristics of the unstable LH populations. This result is consistent with either no evolution of population stability, or very slow change. Thus, while evolution in these populations affects important life-history characteristics, these changes appear to have no detectable effects on population stability. dent rates of population growth. Thus, a natural theoretical question that arises is whether density-dependent natural selection may also cause population stability to evolve in a predictable manner, through its influence on growth rate parameters. While this theoretical question is easy to pose and a little less easy to answer, the more difficult problem is to determine if we expect population stability to evolve in real biological populations. We find evidence from natural history, theory, and estimates of standing genetic variation that suggest population stability can evolve. Natural history Early studies (Hassell et al....
Drosophila melanogaster populations subjected to extreme larval crowding (CU lines) in our laboratory have evolved higher larval feeding rates than their corresponding controls (UU lines). It has been suggested that this genetically based behavior may involve an energetic cost, which precludes natural selection in a density-regulated population to simultaneously maximize food acquisition and food conversion into biomass. If true, this stands against some basic predictions of the general theory of density-dependent natural selection. Here we investigate the evolutionary consequences of density-dependent natural selection on growth rate and body size in D. melanogaster. The CU populations showed a higher growth rate during the postcritical period of larval life than UU populations, but the sustained differences in weight did not translate into the adult stage. The simplest explanation for these findings (that natural selection in a crowded larval environment favors a faster food acquisition for the individual to attain the same final body size in a shorter period of time) was tested and rejected by looking at the larva-to-adult development times. Larvae of CU populations starved for different periods of time develop into comparatively smaller adults, suggesting that food seeking behavior in a food depleted environment carries a higher cost to these larvae than to their UU counterparts. The results have important implications for understanding the evolution of body size in natural populations of Drosophila, and stand against some widespread beliefs that body size may represent a compromise between the conflicting effects of genetic variation in larval and adult performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.