Abstract. Aromatic volatile organic compounds (VOCs) are key anthropogenic pollutants emitted to the atmosphere and are important for both ozone and secondary organic aerosol (SOA) formation in urban areas. Recent studies have indicated that aromatic hydrocarbons may follow previously unknown oxidation chemistry pathways, including autoxidation that can lead to the formation of highly oxidised products. In this study we evaluate the gas- and particle-phase ions measured by online mass spectrometry during the hydroxyl radical oxidation of substituted C9-aromatic isomers (1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, propylbenzene and isopropylbenzene) and a substituted polyaromatic hydrocarbon (1-methylnaphthalene) under low- and medium-NOx conditions. A time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) with iodide–anion ionisation was used with a filter inlet for gases and aerosols (FIGAERO) for the detection of products in the particle phase, while a Vocus proton-transfer-reaction mass spectrometer (Vocus-PTR-MS) was used for the detection of products in the gas phase. The signal of product ions observed in the mass spectra were compared for the different precursors and experimental conditions. The majority of mass spectral product signal in both the gas and particle phases comes from ions which are common to all precursors, though signal distributions are distinct for different VOCs. Gas- and particle-phase composition are distinct from one another. Ions corresponding to products contained in the near-explicit gas phase Master Chemical Mechanism (MCM version 3.3.1) are utilised as a benchmark of current scientific understanding, and a comparison of these with observations shows that the MCM is missing a range of highly oxidised products from its mechanism. In the particle phase, the bulk of the product signal from all precursors comes from ring scission ions, a large proportion of which are more oxidised than previously reported and have undergone further oxidation to form highly oxygenated organic molecules (HOMs). Under the perturbation of OH oxidation with increased NOx, the contribution of HOM-ion signals to the particle-phase signal remains elevated for more substituted aromatic precursors. Up to 43 % of product signal comes from ring-retaining ions including HOMs; this is most important for the more substituted aromatics. Unique products are a minor component in these systems, and many of the dominant ions have ion formulae concurrent with other systems, highlighting the challenges in utilising marker ions for SOA.
Abstract. Isoprene-derived secondary organic aerosol (iSOA) is a significant contributor to organic carbon (OC) in some forested regions, such as tropical rainforests and the Southeastern US. However, its contribution to organic aerosol in urban areas that have high levels of anthropogenic pollutants is poorly understood. In this study, we examined the formation of anthropogenically influenced iSOA during summer in Beijing, China. Local isoprene emissions and high levels of anthropogenic pollutants, in particular NOx and particulate SO42-, led to the formation of iSOA under both high- and low-NO oxidation conditions, with significant heterogeneous transformations of isoprene-derived oxidation products to particulate organosulfates (OSs) and nitrooxy-organosulfates (NOSs). Ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was combined with a rapid automated data processing technique to quantify 31 proposed iSOA tracers in offline PM2.5 filter extracts. The co-elution of the inorganic ions in the extracts caused matrix effects that impacted two authentic standards differently. The average concentration of iSOA OSs and NOSs was 82.5 ng m−3, which was around 3 times higher than the observed concentrations of their oxygenated precursors (2-methyltetrols and 2-methylglyceric acid). OS formation was dependant on both photochemistry and the sulfate available for reactive uptake, as shown by a strong correlation with the product of ozone (O3) and particulate sulfate (SO42-). A greater proportion of high-NO OS products were observed in Beijing compared with previous studies in less polluted environments. The iSOA-derived OSs and NOSs represented 0.62 % of the oxidized organic aerosol measured by aerosol mass spectrometry on average, but this increased to ∼3 % on certain days. These results indicate for the first time that iSOA formation in urban Beijing is strongly controlled by anthropogenic emissions and results in extensive conversion to OS products from heterogenous reactions.
Sixty leading members of the scientific, engineering, regulatory, and legal communities assembled for the PFAS Experts Symposium in Arlington, Virginia on May 20 and 21, 2019 to discuss issues related to per‐ and polyfluoroalkyl substances (PFAS) based on the quickly evolving developments of PFAS regulations, chemistry and analytics, transport and fate concepts, toxicology, and remediation technologies. The Symposium created a venue for experts with various specialized skills to provide opinions and trade perspectives on existing and new approaches to PFAS assessment and remediation in light of lessons learned managing other contaminants encountered over the past four decades. The following summarizes several consensus points developed as an outcome of the Symposium: Regulatory and policy issues: The response by many states and the US Environmental Protection Agency (USEPA) to media exposure and public pressure related to PFAS contamination is to relatively quickly initiate programs to regulate PFAS sites. This includes the USEPA establishing relatively low lifetime health advisory levels for PFAS in drinking water and even more stringent guidance and standards in several states. In addition, if PFAS are designated as hazardous substances at the federal level, as proposed by several Congressional bills, there could be wide‐reaching effects including listing of new Superfund sites solely for PFAS, application of stringent state standards, additional characterization and remediation at existing sites, reopening of closed sites, and cost renegotiation among PRPs. Chemistry and analytics: PFAS analysis is confounded by the lack of regulatory‐approved methods for most PFAS in water and all PFAS in solid media and air, interference with current water‐based analytical methods if samples contain high levels of suspended solids, and sample collection and analytical interference due to the presence of PFAS in common consumer products, sampling equipment, and laboratory materials. Toxicology and risk: Uncertainties remain related to human health and ecological effects for most PFAS; however, regulatory standards and guidance are being established incorporating safety factors that result in part per trillion (ppt) cleanup objectives. Given the thousands of PFAS that may be present in the environment, a more appropriate paradigm may be to develop toxicity criteria for groups of PFAS rather than individual PFAS. Transport and fate: The recalcitrance of many perfluoroalkyl compounds and the capability of some fluorotelomers to transform into perfluoroalkyl compounds complicate conceptual site models at many PFAS sites, particularly those involving complex mixtures, such as firefighting foams. Research is warranted to better understand the physicochemical properties and corresponding transport and fate of most PFAS, of branched and linear isomers of the same compounds, and of the interactions of PFAS with other co‐contaminants such as nonaqueous phase liquids. Many PFAS exhibit complex transport mechanisms, particular...
Abstract. The impact of emissions of volatile organic compounds (VOCs) to the atmosphere on the production of secondary pollutants, such as ozone and secondary organic aerosol (SOA), is mediated by the concentration of nitric oxide (NO). Polluted urban atmospheres are typically considered to be “high-NO” environments, while remote regions such as rainforests, with minimal anthropogenic influences, are considered to be “low NO”. However, our observations from central Beijing show that this simplistic separation of regimes is flawed. Despite being in one of the largest megacities in the world, we observe formation of gas- and aerosol-phase oxidation products usually associated with low-NO “rainforest-like” atmospheric oxidation pathways during the afternoon, caused by extreme suppression of NO concentrations at this time. Box model calculations suggest that during the morning high-NO chemistry predominates (95 %) but in the afternoon low-NO chemistry plays a greater role (30 %). Current emissions inventories are applied in the GEOS-Chem model which shows that such models, when run at the regional scale, fail to accurately predict such an extreme diurnal cycle in the NO concentration. With increasing global emphasis on reducing air pollution, it is crucial for the modelling tools used to develop urban air quality policy to be able to accurately represent such extreme diurnal variations in NO to accurately predict the formation of pollutants such as SOA and ozone.
Biogenic secondary organic aerosol (BSOA) makes up a significant proportion of organic aerosol, and its formation chemistry, composition, and physical properties can be influenced by anthropogenic emissions, especially in urban areas. Organosulfates (OSs) are an important class of tracers for BSOA and have been well-studied over the past decade, although detailed ambient studies of diurnal variations are still lacking. In this study, fine particulate matter samples were collected eight times a day across summer and winter campaigns at an urban site in Guangzhou, China. Guangzhou is heavily influenced by both biogenic and anthropogenic emissions, allowing for biogenic–anthropogenic interactions to be studied. Individual OSs and nitrooxy OSs (NOSs) species derived from monoterpenes and isoprene were analyzed using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS2) and quantified using three authentic and proxy standards. The observations show strong diurnal variations of monoterpene derived OSs and NOSs, which peaked during the night, with concentrations increasing from the early evening, highlighting the role of NO3-oxidation chemistry. Isoprene derived OSs/NOSs showed strong seasonal profiles, with summer and winter average concentrations of 181.8 and 69.5 ng m–3, respectively, with exponential increases observed at temperatures above 30 °C. Low-NO formation pathways were dominant in the summer, while high-NO pathways became more important in the winter. Isoprene OS formation was strongly dependent on the availability of particulate sulfate (SO4 2–), suggesting an extensive heterogeneous chemistry of oxidized isoprene species. Overall, this study provides further insights into biogenically derived OS and NOS formation within highly anthropogenically influenced environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.