Double-bond transposition in alkenes (isomerization) offers opportunities for the synthesis of bioactive molecules, but requires high selectivity to avoid mixtures of products. Generation of Z-alkenes, which are present in many natural products and pharmaceuticals, is particularly challenging because it is usually less thermodynamically favorable than generation of the E isomers. We report a β-dialdiminate-supported, high-spin cobalt(I) complex that can convert terminal alkenes, including previously recalcitrant allylbenzenes, to Z-2-alkenes with unprecedentedly high regioselectivity and stereoselectivity. Deuterium labeling studies indicate that the catalyst operates through a π-allyl mechanism, which is different from the alkyl mechanism that is followed by other Z-selective catalysts. Computations indicate that the triplet cobalt(I) alkene complex undergoes a spin state change from the restingstate triplet to a singlet in the lowest-energy C−H activation transition state, which leads to the Z product. This suggests that this change in spin state enables the catalyst to differentiate the stereodefining barriers in this system, and more generally that spin-state changes may offer a route toward novel stereocontrol methods for first-row transition metals.
The syntheses of bidentate and tripodal phosphine ligands containing aryl chlorides were achieved in 4 and 6 steps respectively, starting from diethylmalonate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.