Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks. IntroductionFirst introduced in 1984 by Bennett and Brassard, quantum key distribution (QKD) is a method for distributing a secret key between two parties [1,2]. Due to a fundamental property of quantum physics known as the nocloning theorem, any attempt made by a third party to eavesdrop inevitably leads to errors that can be detected by the sender and receiver [3,4]. Modern QKD schemes conventionally use a qubit system for encoding information, such as the polarization of a photon. Such systems are easily implemented because technology for encoding and decoding information in a qubit state-space is readily available today, enabling system clock rates in the GHz regime [5][6][7]. Recently, the spatial degree of freedom of photons has been identified as an extremely useful resource for transferring information [8,9]. The information transfer capacity of classical communication links has been increased to more than one terabit per second using spatial-mode multiplexing [10]. In addition, it has been theoretically shown that employing multilevel quantum states (qudits) can increase the robustness of a QKD system against eavesdropping [11][12][13][14]. Although the majority of high-dimensional QKD schemes so far have employed time-bin encoding for increasing the alphabet size [15][16][17][18], it is expected that spatial-mode encoding can be alternatively used to enhance the performance of a QKD system considering the recent advances in free-space orbital angular momentum (OAM) communication, .The feasibility of high-dimensional QKD in the spatial domain has been previously demonstrated by encoding information in the transverse linear momentum and position bases [19,20]. While such encoding schemes provide a simple solution for increasing the information capacity, they are not suitable for long-haul optical links due to the cross-talk caused by diffraction. D...
The spectral and temporal response of an optical cavity resonantly coupled to an ensemble of barium atoms has been investigated experimentally. The empty-cavity transmission resonances are found to split in the presence of the atoms and, under these conditions, the cavity's temporal response is found to be oscillatory. These eA'ects may be viewed as a manifestation of a vacuum-field Rabi splitting, or as a simple consequence of the linear absorption and dispersion of the intracavity atoms.
We describe a method for storing sequences of optical data pulses by converting them into long-lived acoustic excitations in an optical fiber through the process of stimulated Brillouin scattering. These stored pulses can be retrieved later, after a time interval limited by the lifetime of the acoustic excitation. In the experiment reported here, smooth 2-nanosecond-long pulses are stored for up to 12 nanoseconds with good readout efficiency: 29% at 4-nanosecond storage time and 2% at 12 nanoseconds. This method thus can potentially store data packets that are many bits long. It can be implemented at any wavelength where the fiber is transparent and can be incorporated into existing telecommunication networks because it operates using only commercially available components at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.