Abstract. The regenerative growth in culture of the axons of two giant identified neurons from the central nervous system of Aplysia californica was observed using video-enhanced contrast-differential interference contrast microscopy. This technique allowed the visualization in living cells of the membranous organelles of the growth cone. Elongation of axonal branches always occurred through the same sequence of events: A flat organelle-free veil protruded from the front of the growth cone, gradually filled with vesicles that entered by fast axonal transport and Brownian motion from the main body of the growth cone, became more voluminous and engorged with organelles (vesicles, mitochondria, and one or two large, irregular, refractile bodies), and, finally, assumed the cylindrical shape of the axon branch with the organelles predominantly moving by bidirectional fast axonal transport. The veil is thus the nascent axon. Because veils appear to be initially free of membranous organelles, addition of membrane to the plasmalemma by exocytosis is likely to occur in the main body of the growth cone rather than at the leading edge.Veils almost always formed with filopodial borders, protruding between either fully extended or growing filopodia. Therefore, one function of the filopodia is to direct elongation by demarcating the pathway along which axolemma flows. Models of axon growth in which the body of the growth cone is pulled forward, or in which advance of the leading edge is achieved by filopodial shortening or contraction against an adhesion to the substrate, are inconsistent with our observations. We suggest that, during the elongation phase of growth, filopodia may act as structural supports.
Recent evidence has implicated dynein and its regulatory factors dynactin and LIS1 in neuronal and non-neuronal cell migration. In the current study we sought to test whether effects on neuronal cell motility might reflect, in part, a role for these proteins in the growth cone. In chick sensory neurons subjected to acute laminin treatment dynein, dynactin, and LIS1 were mobilized strikingly and rapidly to the leading edge of the growth cone, where they were seen to be associated with microtubules converging into the laminin-induced axonal outgrowths. To interfere acutely with LIS1 and dynein function and to minimize secondary phenotypic effects, we injected antibodies to these proteins just before axon initiation. Antibody to both proteins produced an almost complete block of laminin-induced growth cone remodeling and the underlying reorganization of microtubules. Penetration of microtubules into the peripheral zone of differentiating axonal growth cones was decreased dramatically by antibody injection, as judged by live analysis of enhanced green fluorescent proteintubulin and the microtubule tip-associated EB3 (end-binding protein 3). Dynein and LIS1 inhibition had no detectable effect on microtubule assembly but reduced the ability of microtubules to resist retrograde actin flow. In hippocampal neurons dynein, dynactin, and LIS1 were enriched in axonal growth cones at stage 3, and both growth cone organization and axon elongation were altered by LIS1 RNA interference. Together, our data indicate that dynein and LIS1 play a surprisingly prominent role in microtubule advance during growth cone remodeling associated with axonogenesis. These data may explain, in part, the role of these proteins in brain developmental disease and support an important role in diverse aspects of neuronal differentiation and nervous system development.
Abstract. Several types of evidence suggest that protein-tyrosine phosphorylation is important during the growth of neuronal processes, but few specific roles, or subcellular localizations suggestive of such roles, have been defined. We report here a localization of tyrosine-phosphorylated protein at the tips of growth cone filopodia. Immunocytochemistry using a rnAb to phosphorylated tyrosine residues revealed intense staining of the tips of most filopodia of Aplysia axons growing slowly on a polylysine substrate, but of few filopodia of axons growing rapidly on a substrate coated with Aplysia hemolymph, which has growthpromoting material. Cytochalasin D, which causes F-actin to withdraw rapidly from the growth cone, caused the tyrosine-phosphorylated protein to withdraw rapidly from filopodia, suggesting that the protein associates or interacts with actin filaments. Phosphotyrosine has previously been found concentrated at adherens junctions, where bundles of actin filaments terminate, but video-enhanced contrastdifferential interference contrast and confocal interference reflection microscopy demonstrated that the filopodial tips were not adherent to the substrate. Acute application of either hemolymph or inhibitors of protein-tyrosine kinases to neurons on polylysine resulted in a rapid loss of intense staining at filopodial tips concomitant with a lengthening of the filopodia (and their core bundles of actin filaments). These results demonstrate that tyrosine-phosphorylated protein can be concentrated at the barbed ends of actin filaments in a context other than an adherens junction, indicate an association between changes in phosphorylation and filament dynamics, and provide evidence for tyrosine phosphorylation as a signaling mechanism in the filopodium that can respond to environmental cues controlling growth cone dynamics.
Morphological changes are thought to contribute to the expression of long-term synaptic plasticity, a cellular basis for learning and memory. The mechanisms mediating the initiation and maintenance of the morphological changes are poorly understood. We repeatedly imaged the axonal arbors of mechanosensory neurons of Aplysia as they formed new synaptic varicosities and axonal branches after applications of serotonin that cause long-term synaptic facilitation. New varicosities formed exclusively from preexisting varicosities, by splitting or branch outgrowth. These changes were prevented by cytochalasin D, which blocks actin polymerization and the turnover of actin filaments. The suppression of the morphological changes by cytochalasin D did not impair their expression when cytochalasin D was removed 24 hr after exposure to serotonin. These results imply that serotonin induces persistent effects at preexisting presynaptic varicosities, which enhance actin polymerization, and that this is essential for presynaptic morphological changes of long-term facilitation.
BackgroundGlutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds.ResultsUsing molecular and immunohistochemical techniques, we show that the vesicular transporters for glutamate, VGLUT 1 and 2, but not VGLUT3, are expressed in the nerve fibers surrounding taste buds but likely not in taste cells themselves. Further, we show that P2X2, a specific marker for gustatory but not trigeminal fibers, co-localizes with VGLUT2, suggesting the VGLUT-expressing nerve fibers are of gustatory origin. Calcium imaging indicates that GAD67-GFP Type III taste cells, but not T1R3-GFP Type II cells, respond to glutamate at concentrations expected for a glutamate transmitter, and further, that these responses are partially blocked by NBQX, a specific AMPA/Kainate receptor antagonist. RT-PCR and immunohistochemistry confirm the presence of the Kainate receptor GluR7 in Type III taste cells, suggesting it may be a target of glutamate released from gustatory nerve fibers.ConclusionsTaken together, the results suggest that glutamate may be released from gustatory nerve fibers using a vesicular mechanism to modulate Type III taste cells via GluR7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.