BACKGROUND Clomiphene is the current first-line infertility treatment in women with the polycystic ovary syndrome, but aromatase inhibitors, including letrozole, might result in better pregnancy outcomes. METHODS In this double-blind, multicenter trial, we randomly assigned 750 women, in a 1:1 ratio, to receive letrozole or clomiphene for up to five treatment cycles, with visits to determine ovulation and pregnancy, followed by tracking of pregnancies. The polycystic ovary syndrome was defined according to modified Rotterdam criteria (anovulation with either hyperandrogenism or polycystic ovaries). Participants were 18 to 40 years of age, had at least one patent fallopian tube and a normal uterine cavity, and had a male partner with a sperm concentration of at least 14 million per milliliter; the women and their partners agreed to have regular intercourse with the intent of conception during the study. The primary outcome was live birth during the treatment period. RESULTS Women who received letrozole had more cumulative live births than those who received clomiphene (103 of 374 [27.5%] vs. 72 of 376 [19.1%], P = 0.007; rate ratio for live birth, 1.44; 95% confidence interval, 1.10 to 1.87) without significant differences in overall congenital anomalies, though there were four major congenital anomalies in the letrozole group versus one in the clomiphene group (P = 0.65). The cumulative ovulation rate was higher with letrozole than with clomiphene (834 of 1352 treatment cycles [61.7%] vs. 688 of 1425 treatment cycles [48.3%], P<0.001). There were no significant between-group differences in pregnancy loss (49 of 154 pregnancies in the letrozole group [31.8%] and 30 of 103 pregnancies in the clomiphene group [29.1%]) or twin pregnancy (3.4% and 7.4%, respectively). Clomiphene was associated with a higher incidence of hot flushes, and letrozole was associated with higher incidences of fatigue and dizziness. Rates of other adverse events were similar in the two treatment groups. CONCLUSIONS As compared with clomiphene, letrozole was associated with higher live-birth and ovulation rates among infertile women with the polycystic ovary syndrome. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00719186.)
The endocrine system dynamically controls tissue differentiation and homeostasis, but has not been studied using dynamic tissue culture paradigms. Here we show that a microfluidic system supports murine ovarian follicles to produce the human 28-day menstrual cycle hormone profile, which controls human female reproductive tract and peripheral tissue dynamics in single, dual and multiple unit microfluidic platforms (Solo-MFP, Duet-MFP and Quintet-MPF, respectively). These systems simulate the in vivo female reproductive tract and the endocrine loops between organ modules for the ovary, fallopian tube, uterus, cervix and liver, with a sustained circulating flow between all tissues. The reproductive tract tissues and peripheral organs integrated into a microfluidic platform, termed EVATAR, represents a powerful new in vitro tool that allows organ–organ integration of hormonal signalling as a phenocopy of menstrual cycle and pregnancy-like endocrine loops and has great potential to be used in drug discovery and toxicology studies.
Polycystic ovary syndrome (PCOS) is a common, highly heritable complex disorder of unknown aetiology characterized by hyperandrogenism, chronic anovulation and defects in glucose homeostasis. Increased luteinizing hormone relative to follicle-stimulating hormone secretion, insulin resistance and developmental exposure to androgens are hypothesized to play a causal role in PCOS. Here we map common genetic susceptibility loci in European ancestry women for the National Institutes of Health PCOS phenotype, which confers the highest risk for metabolic morbidities, as well as reproductive hormone levels. Three loci reach genome-wide significance in the case–control meta-analysis, two novel loci mapping to chr 8p32.1 and chr 11p14.1, and a chr 9q22.32 locus previously found in Chinese PCOS. The same chr 11p14.1 SNP, rs11031006, in the region of the follicle-stimulating hormone B polypeptide (FSHB) gene strongly associates with PCOS diagnosis and luteinizing hormone levels. These findings implicate neuroendocrine changes in disease pathogenesis.
Previous results have shown that the pattern of GnRH pulses (amplitude and frequency) can differentially regulate expression of gonadotropin subunit cytoplasmic messenger RNA (mRNA) concentrations. The present study examined the effect of GnRH pulses on alpha, LH-beta and FSH-beta transcription rates as determined by nuclear runoff transcription assay. GnRH pulses (saline to controls) were given to castrate, testosterone-replaced male rats, and the rate of subunit gene transcription was measured in isolated pituitary nuclei. The effect of GnRH treatment duration was examined by giving GnRH pulses (25 ng/pulse at 30-min intervals) for 1, 4, or 24 h. The basal transcription rates [expressed as parts per million (ppm)] were 82 +/- 25 for alpha; 39 +/- 19 for LH-beta and 27 +/- 6 ppm for FSH-beta, and transcription rates of all 3 subunits were elevated at 1 h (3-5-fold vs. saline controls). After 4 h of GnRH pulses, alpha and FSH-beta transcription rates were reduced vs. 1 h, but LH-beta mRNA synthesis rate was maintained. At 24 h, the alpha transcription rate was still increased (66%), but LH-beta and FSH-beta transcription rates had fallen to basal levels despite the continuing pulsatile GnRH stimulus. The second experiment investigated the effect of the duration of GnRH pulses (25 ng/pulse, every 30 min for 4 h or 24 h), on cytoplasmic subunit mRNA concentrations to assess if the initial 4-h increase in transcription rate would induce a rise in cytoplasmic mRNAs. After 4 h of GnRH pulses, alpha and LH-beta mRNAs were unchanged, but FSH-beta mRNA had increased by 36% (P less than 0.05) compared to controls. All 3 subunit mRNAs were increased (approximately 2-fold) by 24 h of GnRH pulses. Administering GnRH pulses for 4 h followed by 20 h of saline pulses did not increase alpha mRNA; LH-beta was slightly increased (P less than 0.05), but FSH-beta mRNA concentrations were similar to levels seen after 24 h of continued GnRH pulses. The third experiment examined the effects of a continuous GnRH infusion and different GnRH pulse frequencies on gonadotropin subunit transcription rates. GnRH (25 ng/pulse) was given at intervals of 8, 30, or 120 min for 4 h (saline to controls). The continuous GnRH infusion (200 ng/h) did not increase the transcription rate of any of the three subunit mRNAs. alpha-subunit transcription rate was increased 2.7- or 4-fold by GnRH pulses given every 8 or 30 min, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.