With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14‐week period (17 August–24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian’s eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban–wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot‐usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species‐specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.
Urbanization is increasing globally, fragmenting habitats and prompting human–wildlife conflict. Urban wildlife research is concurrently expanding, but sampling methods are often biased towards large and intact habitats in public green spaces, neglecting the far more abundant, but degraded, habitats in the urban matrix. Here, we introduce the Five P’s of Urban Ecology—Partnerships, Planning, Placements, Public participation and Processing—as a path to overcoming the logistical barriers often associated with camera-trapping in the urban matrix. Though the Five P’s can be applied to a variety of urban sampling methods, we showcase the camera-trapping efforts of the DC Cat Count project in Washington, DC, as a case study. We compared occupancy models for eight urban mammal species using broad categorizations of land cover and local land use to determine drivers of mammal occurrence within the urban matrix as compared with urban habitat patches. Many native species maintained a strong association with large, semi-natural green spaces, but occupancy was not limited to these locations, and in some cases, the use of private yards and the built environment were not notably different. Furthermore, some species exhibited higher occupancy probabilities in developed areas over green spaces. Though seemingly intuitive, we offer advice on how to greatly reduce habitat-biased sampling methods in urban wildlife research and illustrate the importance of doing so to ensure accurate results that support the formation of effective urban planning and policy.
Free-roaming cats are a conservation concern in many areas but identifying their impacts and developing mitigation strategies requires a robust understanding of their distribution and density patterns. Urban and residential areas may be especially relevant in this process because free-roaming cats are abundant in these anthropogenic landscapes. Here, we estimate the occupancy and density of free-roaming cats in Washington D.C. and relate these metrics to known landscape and social factors. We conducted an extended camera trap survey of public and private spaces across D.C. and analyzed data collected from 1483 camera deployments from 2018 to 2020. We estimated citywide cat distribution by fitting hierarchical occupancy models and further estimated cat abundance using a novel random thinning spatial capture-recapture model that allows for the use of photos that can and cannot be identified to individual. Within this model, we utilized individual covariates that provided identity exclusions between photos of unidentifiable cats with inconsistent coat patterns, thus increasing the precision of abundance estimates. This combined model also allowed for unbiased estimation of density when animals cannot be identified to individual at the same rate as for free-roaming cats whose identifiability depended on their coat characteristics. Cat occupancy and abundance declined with increasing distance from residential areas, an effect that was more pronounced in wealthier neighborhoods. There was noteworthy absence of cats detected in larger public spaces and forests. Realized densities ranged from 0.02 to 1.75 cats/ha in sampled areas, resulting in a district-wide estimate of ~7296 free-roaming cats. Ninety percent of cat detections lacked collars and nearly 35% of known individuals were ear-tipped, indicative of district Trap-Neuter-Return (TNR) programs. These results suggest that we mainly sampled and estimated the unowned cat subpopulation, such that indoor/outdoor housecats were not well represented. The precise estimation of cat population densities is difficult due to the varied behavior of subpopulations within free-roaming cat populations (housecats, stray and feral cats), but our methods provide a first step in establishing citywide
Free-roaming domestic cats (Felis catus) are known to pose threats to ecosystem health via transmission of zoonotic diseases and predation of native wildlife. Likewise, free-roaming cats are also susceptible to predation or disease transmission from native wildlife. Physical interactions are required for many of these risks to be manifested, necessitating spatial and temporal overlap between cats and wildlife species. Therefore, knowledge of the location and extent of shared habitat and activity periods would benefit management programs. We used data from a 3-year camera trap survey to model species-specific occupancy and identify landscape variables that contribute to the distribution of free-roaming domestic cats and eight native mammal species in Washington, DC. (USA). Our analysis includes five species that are common prey items of domestic cats, and three species that are potential disease vectors or are otherwise known to be a risk to cats. We then predicted the probability of occupancy and estimated the probability of spatial overlap between cats and each native wildlife species at multiple scales. We also used kernel density estimations to calculate temporal overlap between cats and each native wildlife species. Across spatial scales, occupancy for potential disease vector species was generally positively correlated with canopy cover and open water. Prey species were also generally positively correlated with canopy cover, but displayed negative associations with human population density and inconsistent associations with average per capita income. Domestic cat occupancy was negatively correlated with natural habitat characteristics and positively correlated with human population density. Predicted spatial overlap between domestic cats and native wildlife was greatest for potential disease vector species. Temporal overlap was high (>0.50) between cats and all but two native wildlife species, indicating that temporal overlap is probable wherever species overlap spatially. Our findings indicate that the risk to and from domestic cats varies across urban landscapes, but primarily arises from human activities. As such, humans are implicated in the negative outcomes that result from cats interacting with wildlife. Data-driven management to reduce such interactions can aid in cat population management, biodiversity conservation, and public health campaigns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.