The worldwide push toward the reduction of carbon dioxide emissions has been the main motivation for finding a sustainable alternative to the conventional Haber–Bosch ammonia production process that has a significant carbon footprint. In this work, we focused on ammonia separation by replacing the condenser with an absorber column packed with metal halide solid absorbents. These salts had shown promise in selective separation of NH3 in the past, but more information on the cyclic operation and ammonia desorption conditions was needed. We used an automated apparatus equipped with an absorption column packed with either silica, supported CaCl2, or supported MgCl2 to explore the optimal absorption/desorption conditions (pressure and temperature swings). Primarily, we are reporting on the working capacity of various sorbents for cyclic ammonia separation. Additionally, we investigated the effect of sweep gas on the desorption efficiency and compared the absorbent performance among each other in terms of absorption working capacity and the purity of the ammonia product stream. We were able to achieve an NH3 stream with a purity of over 95%; in some of the tests, we achieved a coordination number as high as 2.5 molNH3 /molsalt, which is the highest ever reported for a dynamic flow breakthrough test. Our experiments further prove the significant potential that these salts possess to replace phase change condensation in the conventional ammonia synthesisnot only in a greener fashion but also more efficiently with a decreased equipment size, with reduced energy input in smaller scales, and with more flexibility to follow intermittent renewables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.