This statement revises a previous statement on screening of preterm infants for retinopathy of prematurity (ROP) that was published in 2006. ROP is a pathologic process that occurs only in immature retinal tissue and can progress to a tractional retinal detachment, which can result in functional or complete blindness. Use of peripheral retinal ablative therapy by using laser photocoagulation for nearly 2 decades has resulted in a high probability of markedly decreasing the incidence of this poor visual outcome, but the sequential nature of ROP creates a requirement that at-risk preterm infants be examined at proper times and intervals to detect the changes of ROP before they become permanently destructive. This statement presents the attributes on which an effective program for detecting and treating ROP could be based, including the timing of initial examination and subsequent reexamination intervals. Pediatrics 2013;131:189-195
This policy statement revises a previous statement on screening of preterm infants for retinopathy of prematurity (ROP) that was published in 2013. ROP is a pathologic process that occurs in immature retinal tissue and can progress to a tractional retinal detachment, which may then result in visual loss or blindness. For more than 3 decades, treatment of severe ROP that markedly decreases the incidence of this poor visual outcome has been available. However, severe, treatment-requiring ROP must be diagnosed in a timely fashion to be treated effectively. The sequential nature of ROP requires that infants who are at-risk and preterm be examined at proper times and intervals to detect the changes of ROP before they become destructive. This statement presents the attributes of an effective program to detect and treat ROP, including the timing of initial and follow-up examinations.
A policy statement describing the use of automated vision screening technology (instrument-based vision screening) is presented. Screening for amblyogenic refractive error with instrument-based screening is not dependent on behavioral responses of children, as when visual acuity is measured. Instrument-based screening is quick, requires minimal cooperation of the child, and is especially useful in the preverbal, preliterate, or developmentally delayed child. Children younger than 4 years can benefit from instrument-based screening, and visual acuity testing can be used reliably in older children. Adoption of this new technology is highly dependent on third-party payment policies, which could present a significant barrier to adoption. Pediatrics 2012;130:983-986
IMPORTANCE While older children and adults with achromatopsia have been studied, less is known of young children with achromatopsia.OBJECTIVES To characterize the macular and foveal architecture of patients with achromatopsia during early childhood with handheld spectral-domain optical coherence tomographic imaging and to make phenotype-genotype correlations.DESIGN, SETTING, AND PARTICIPANTS Comparative case series of 9 patients with achromatopsia and 9 age-matched control participants at a tertiary ophthalmology referral center.MAIN OUTCOMES AND MEASURES Patients underwent complete ocular examination, full-field electroretinography, handheld spectral-domain optical coherence tomographic imaging, and screening for genetic mutations. RESULTSThe mean (SD) age of the patients with achromatopsia was 4.2 (2.4) years, and the mean (SD) age of the control participants was 4.0 (2.1) years. Cone-driven responses to photopic single-flash or 30-Hz stimuli were nonrecordable in 7 patients and severely attenuated in 2. Rod-driven responses to dim scotopic single-flash stimuli were normal in 7 patients and mildly subnormal in 2. Six patients (67%) had foveal ellipsoid zone disruption, of which 1 had a hyporeflective zone. Four patients (44%) had foveal hypoplasia. The average total retinal thicknesses of the macula and fovea in the patients with achromatopsia were 14% and 17% thinner than in the control participants (P < .001 and P = .001), which was mostly due to the outer retina that was 18% and 26% thinner than in control participants (both P < .001), respectively. Genetic testing revealed a common homozygous mutation in CNGB3 in 5 patients with complete achromatopsia and heterozygous mutations in CNGA3 in 2 patients with incomplete achromatopsia. The youngest and worst-affected patient harbored compound heterozygous mutations in CNGB3 and a single mutation in CNGA3. CONCLUSIONS AND RELEVANCEIn early childhood, there is a spectrum of foveal pathology that is milder than reported in older individuals with achromatopsia, which suggests the need for early therapeutic intervention. Neither age alone nor genotype alone predicts the degree of photoreceptor loss or preservation. Thus, in anticipation of future gene therapy trials in humans, we propose that handheld spectral-domain optical coherence tomography is an important tool for the early assessment and stratification of macular architecture in young children with achromatopsia.
There is good potential for visual recovery following uncomplicated traumatic hyphema in children. In our patient cohort, the majority of patients had significant improvement in visual acuity within the first 28 days; in some children visual acuity continued to improve beyond the first month.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.