Aside from band gap reduction, little is understood about the effect of the tin‐for‐lead substitution on the fundamental optical and optoelectronic properties of metal halide perovskites (MHPs), especially when transitioning from 3D to lower dimensional structures. Herein, we take advantage of the spectroscopic isolation of excitons in 2D MHPs to study the intrinsic differences between lead and tin MHPs. The exciton's spectral fine structure indicates a larger polaron binding energy in tin MHPs. Additionally, the electroabsorption responses of the 2D MHPs demonstrates that tin MHPs have exciton binding energies 1.5–2× lower than that of their lead counterparts. Despite the lower binding energy, the excitons in tin MHPs are more Frenkel‐like with small radii, small polarizabilities, and large dipole moments. These results are interpreted as consequences of small polaron formation and disorder‐induced dipole moments. This work highlights the wide range of intrinsic differences between lead and tin MHPs as well as the complexity of excited states in these systems.
Dendroarchaeology is under-represented in the Gulf Coastal Plain region of the United States (US), and at present, only three published studies have precision dated a collection of 18th–19th-century structures. In this study, we examined the tree-ring data from pine, poplar, and oak timbers used in the Walker House in Tupelo, Mississippi. The Walker House was constructed ca. the mid-1800s with timbers that appeared to be recycled from previous structures. In total, we examined 30 samples (16 pines, 8 oaks, and 6 poplars) from the attic and crawlspace. We cross-dated latewood ring growth from the attic pine samples to the period 1541–1734 (r = 0.52, t = 8.43, p < 0.0001) using a 514-year longleaf pine (Pinus palustris Mill.) latewood reference chronology from southern Mississippi. The crawlspace oak samples produced a 57-year chronology that we dated against a white oak (Quercus alba L.) reference chronology from northeast Alabama to the period 1765–1822 (r = 0.36, t = 2.83, p < 0.01). We were unable to cross-date the six poplar samples due to a lack of poplar reference chronologies in the region. Our findings have two important implications: (1) the pine material dated to 1734 represents the oldest dendroarchaeology-confirmed dating match for construction materials in the southeastern US, and (2) cross-dating latewood growth for southeastern US pine species produced statistically significant results, whereas total ring width failed to produce significant dating results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.