Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
O2 consumption (VO2) of anesthetized whole mammals is independent of O2 delivery (DO2) until DO2 declines to a critical value (DO2c). Below this value, VO2 becomes O2 supply dependent. We assessed the influence of whole body DO2 redistribution among organs with respect to the commencement of O2 supply dependency. We measured DO2, VO2, and DO2c of whole body, liver, intestine, kidney, and remaining carcass in eight mongrel dogs during graded progressive hemorrhage. Whole body DO2 was redistributed such that the organ-to-whole body DO2 ratio declined for liver and kidney and increased for carcass. We then created a mathematical model wherein each organ-to-whole body DO2 ratio remained approximately constant at all values of whole body DO2 and assigned organ VO2 to predicted organ DO2 by interpolation and extrapolation of observed VO2-DO2 plots. The model predicted that O2 supply dependency without redistribution would have commenced at a higher value of whole body DO2 for whole body (8.11 +/- 0.89 vs. 6.98 +/- 1.16 ml.kg-1.min-1, P less than 0.05) and carcass (6.83 +/- 1.16 vs. 5.06 +/- 1.15 ml.kg-1.min-1, P less than 0.01) and at a lower value of whole body DO2 for liver (6.33 +/- 1.86 vs. 7.59 +/- 1.95, ml.kg-1.min-1, P less than 0.02) and kidney (1.25 +/- 0.64 vs. 4.54 +/- 1.29 ml.kg-1.min-1, P less than 0.01). We conclude that redistribution of whole body DO2 among organs facilitates whole body O2 regulation.
Hepatic O2 consumption (VO2) remains relatively constant (O2 supply independent) as O2 delivery (DO2) progressively decreases, until a critical DO2 (DO2c) is reached below which hepatic VO2 also decreases (O2 supply dependence). Whether this decrease in VO2 represents an adaptive reduction in O2 demand or a manifestation of tissue dysoxia, i.e., O2 supply that is inadequate to support O2 demand, is unknown. We tested the hypothesis that the decrease in hepatic VO2 during O2 supply dependence represents dysoxia by evaluating hepatic mitochondrial NAD redox state during O2 supply independence and dependence induced by progressive hemorrhage in six pentobarbital-anesthetized dogs. Hepatic mitochondrial NAD redox state was estimated by measuring hepatic venous beta-hydroxybutyrate-to-acetoacetate ratio (beta OHB/AcAc). The value of DO2c was 5.02 +/- 1.64 (SD) ml.100 g-1.min-1. The beta-hydroxybutyrate-to-acetoacetate ratio was constant until a DO2 value (3.03 +/- 1.08 ml.100 g-1.min-1) was reached (P = 0.05 vs. DO2c) and then increased linearly. Peak liver lactate extraction ratio was 15.2 +/- 14.1%, occurring at a DO2 of 5.48 +/- 2.54 ml.100 g-1.min-1 (P = NS vs. DO2c). Our data support the hypothesis that the decrease in VO2 during O2 supply dependence represents tissue dysoxia.
N-(2-Mercaptoethyl)picolylamine (MEPAH) was studied as a potentially biologically relevant ligand for the "fac-[M(CO)(3)](+)" core (M = Re, (99)Tc, (99m)Tc). To this end, the complex Re(CO)(3)(MEPA) was synthesized. The reaction of MEPAH with fac-[Re(CO)(3)(MeCN)(3)](+) took place over the course of seconds, showing the high affinity possessed by this ligand for the "fac-[Re(CO)(3)](+)" core. A single-crystal X-ray diffraction study was performed confirming the nature of Re(CO)(3)(MEPA), a rare mononuclear rhenium(I) thiolate complex. Additional exploration into derivatization of the ligand backbone has afforded the analogous N-ethyl complex, Re(CO)(3)(MEPA-NEt). The high affinity of the ligand for the metal coupled with the ease of its derivatization implies that utilization of this ligand system for the purposes of (99m)Tc-radiopharmaceutical development is promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.