Coupled chemical oscillators are usually studied with symmetric coupling, either between identical oscillators or between oscillators whose frequencies differ. Asymmetric connectivity is important in neuroscience, where synaptic strength inequality in neural networks commonly occurs. While the properties of the individual oscillators in some coupled chemical systems may be readily changed, enforcing inequality between the connection strengths in a reciprocal coupling is more challenging. We recently demonstrated a novel way of coupling chemical oscillators, which allows for manipulation of individual connection strengths. Here we study two identical, pulse-coupled Belousov-Zhabotinsky (BZ) oscillators with unequal connection strengths. When the pulse perturbations contain KBr (inhibitor), this system exhibits simple out-of-phase and complex oscillations, oscillatory-suppressed states as well as temporally periodic patterns (N : M) in which the two oscillators exhibit different numbers of peaks per cycle. The N : M patterns emerge due to the long-term effect of the inhibitory pulse-perturbations, a feature that has not been considered in earlier works. Time delay was previously shown to have a profound effect on the system's behaviour when pulse coupling was inhibitory and the coupling strengths were equal. When the coupling is asymmetric, however, delay produces no qualitative change in behaviour, though the 1 : 2 temporal pattern becomes more robust. Asymmetry in instantaneous excitatory coupling via AgNO3 injection produces a previously unseen temporal pattern (1 : N patterns starting with a double peak) with time delay and high [AgNO3]. Numerical simulations of the behaviour agree well with theoretical predictions in asymmetrical pulse-coupled systems.
We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric. This approach may be adapted to other systems, such as coupled neurons, where the oscillatory dynamics is affected by strong pulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.