Control systems for powered prosthetic legs typically divide the gait cycle into several periods with distinct controllers, resulting in dozens of control parameters that must be tuned across users and activities. To address this challenge, this paper presents a control approach that unifies the gait cycle of a powered knee-ankle prosthesis using a continuous, user-synchronized sense of phase. Virtual constraints characterize the desired periodic joint trajectories as functions of a phase variable across the entire stride. The phase variable is computed from residual thigh motion, giving the amputee control over the timing of the prosthetic joint patterns. This continuous sense of phase enabled three transfemoral amputee subjects to walk at speeds from 0.67 to 1.21 m/s and slopes from -2.5 to +9.0 deg. Virtual constraints based on task-specific kinematics facilitated normative adjustments in joint work across walking speeds. A fixed set of control gains generalized across these activities and users, which minimized the configuration time of the prosthesis.
Human gait involves a repetitive cycle of movements, and the phase of gait represents the location in this cycle. Gait phase is measured across many areas of study (e.g., for analyzing gait and controlling powered lower-limb prosthetic and orthotic devices). Current gait phase detection methods measure discrete gait events (e.g., heel strike, flat foot, toe off, etc.) by placing multiple sensors on the subject’s lower-limbs. Using multiple sensors can create difficulty in experimental setup and real-time data processing. In addition, detecting only discrete events during the gait cycle limits the amount of information available during locomotion. In this paper we propose a real-time and continuous measurement of gait phase parameterized by a mechanical variable (i.e., phase variable) from a single sensor measuring the human thigh motion. Human subject experiments demonstrate the ability of the phase variable to accurately parameterize gait progression for different walking/running speeds (1 to 9 miles/hour). Our results show that this real-time method can also estimate gait speed from the same sensor.
This paper presents a potential solution to the challenge of configuring powered knee-ankle prostheses in a clinical setting. Typically, powered prostheses use impedance-based control schemes that contain several independent controllers which correspond to consecutive periods along the gait cycle. This control strategy has numerous control parameters and switching rules that are generally tuned by researchers or technicians and not by a certified prosthetist. We propose an intuitive clinician control interface (CCI) in which clinicians tune a powered knee-ankle prosthesis based on a virtual constraint control scheme, which tracks desired periodic joint trajectories based on a continuous measurement of the phase (or progression) of gait. The interface derives virtual constraints from clinician-designed joint kinematic trajectories. An experiment was conducted in which a certified prosthetist used the control interface to configure a powered knee-ankle prosthesis for a transfemoral amputee subject during level-ground walking trials. While it usually takes engineers hours of tuning individual parameters by trial and error, the CCI allowed the clinician to tune the powered prosthesis controller in under 10 min. This allowed the clinician to improve several amputee gait outcome metrics, such as gait symmetry. These results suggest that the CCI can improve the clinical viability of emerging powered knee-ankle prostheses.
Purpurogallin (PPG), an orange-red crystalline compound from nutgalls and oak bark, is an exemplar of numerous, ubiquitous natural colorants, biosynthesized through oxidative dimerization-decarboxylation of phenolic compounds. It possesses antioxidant, anticancer, and anti-inflammatory effects. Herein, a robust method is presented to allow students to expediently make this interesting compound that contains a tropolone ring, whose identity initiated a paradigm shift in the understanding of aromaticity. 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data (1H, 13C-DEPT-Q, HSQC, HMBC) were used to identify which protons are connected to carbon atoms. Fourier transform infrared spectroscopy (FT-IR), mass spectrometry, and X-ray diffraction were used to provide complementary information. Importantly, sufficient historical detail is given to provide a useful narrative that highlights the shift from deductive and synthetic proof of structural identity to modern methods of structural elucidation. As a minor, but important, aspect of iron gall inks, PPG links the work of important western historical documents from Da Vinci’s Vitruvian Man to the United States Declaration of Independence. In the experience of the authors, such a pedagogic approach enlivens students with practical exercises which place them within the historical arc and reasoning of notable scientists, adding a sense of scientific discovery.
One-pot synthesis and negative ion mass spectrometric investigation of a densely functionalized cinnoline, 3-amino-5,7,8-trichloro-6-hydroxycinnoline-4-carbonitrile http://researchonline.ljmu.ac.uk/2433/ Article LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.