Background Intersectionality is a theoretical framework rooted in the premise that human experience is jointly shaped by multiple social positions (e.g. race, gender), and cannot be adequately understood by considering social positions independently. Used widely in qualitative studies, its uptake in quantitative research has been more recent. Objectives To characterize quantitative research applications of intersectionality from 1989 to mid-2020, to evaluate basic integration of theoretical frameworks, and to identify innovative methods that could be applied to health research. Methods Adhering to PRISMA guidelines, we conducted a systematic review of peer-reviewed articles indexed within Scopus, Medline, ProQuest Political Science and Public Administration, and PsycINFO. Original English-language quantitative or mixed-methods research or methods papers that explicitly applied intersectionality theoretical frameworks were included. Experimental studies on perception/stereotyping and measures development or validation studies were excluded. We extracted data related to publication, study design, quantitative methods, and application of intersectionality. Results 707 articles (671 applied studies, 25 methods-only papers, 11 methods plus application) met inclusion criteria. Articles were published in journals across a range of disciplines, most commonly psychology, sociology, and medical/life sciences; 40.8% studied a health-related outcome. Results supported concerns among intersectionality scholars that core theoretical tenets are often lost or misinterpreted in quantitative research; about one in four applied articles (26.9%) failed to define intersectionality, while one in six (17.5%) included intersectional position components not reflective of social power. Quantitative methods were simplistic (most often regression with interactions, cross-classified variables, or stratification) and were often misapplied or misinterpreted. Several novel methods were identified. Conclusions Intersectionality is frequently misunderstood when bridging theory into quantitative methodology. Further work is required to (1) ensure researchers understand key features that define quantitative intersectionality analyses, (2) improve reporting practices for intersectional analyses, and (3) develop and adapt quantitative methods.
Dynamic treatment regimes are of growing interest across the clinical sciences because these regimes provide one way to operationalize and thus inform sequential personalized clinical decision making. Formally, a dynamic treatment regime is a sequence of decision rules, one per stage of clinical intervention. Each decision rule maps up-to-date patient information to a recommended treatment. We briefly review a variety of approaches for using data to construct the decision rules. We then review a critical inferential challenge that results from nonregularity, which often arises in this area. In particular, nonregularity arises in inference for parameters in the optimal dynamic treatment regime; the asymptotic, limiting, distribution of estimators are sensitive to local perturbations. We propose and evaluate a locally consistent Adaptive Confidence Interval (ACI) for the parameters of the optimal dynamic treatment regime. We use data from the Adaptive Pharmacological and Behavioral Treatments for Children with ADHD Trial as an illustrative example. We conclude by highlighting and discussing emerging theoretical problems in this area.
The selection of effective genes that accurately predict chemotherapy responses might improve cancer outcomes. We compare optimized gene signatures for cisplatin, carboplatin, and oxaliplatin responses in the same cell lines and validate each signature using data from patients with cancer. Supervised support vector machine learning is used to derive gene sets whose expression is related to the cell line GI50 values by backwards feature selection with cross-validation. Specific genes and functional pathways distinguishing sensitive from resistant cell lines are identified by contrasting signatures obtained at extreme and median GI50 thresholds. Ensembles of gene signatures at different thresholds are combined to reduce the dependence on specific GI50 values for predicting drug responses. The most accurate gene signatures for each platin are: cisplatin: BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, MAP3K1, MAPK13, MAPK3, NFKB1, NFKB2, SLC22A5, SLC31A2, TLR4, and TWIST1; carboplatin: AKT1, EIF3K, ERCC1, GNGT1, GSR, MTHFR, NEDD4L, NLRP1, NRAS, RAF1, SGK1, TIGD1, TP53, VEGFB, and VEGFC; and oxaliplatin: BRAF, FCGR2A, IGF1, MSH2, NAGK, NFE2L2, NQO1, PANK3, SLC47A1, SLCO1B1, and UGT1A1. Data from The Cancer Genome Atlas (TCGA) patients with bladder, ovarian, and colorectal cancer were used to test the cisplatin, carboplatin, and oxaliplatin signatures, resulting in 71.0%, 60.2%, and 54.5% accuracies in predicting disease recurrence and 59%, 61%, and 72% accuracies in predicting remission, respectively. One cisplatin signature predicted 100% of recurrence in non-smoking patients with bladder cancer (57% disease-free; N = 19), and 79% recurrence in smokers (62% disease-free; N = 35). This approach should be adaptable to other studies of chemotherapy responses, regardless of the drug or cancer types.
This paper highlights the role that reinforcement learning can play in the optimization of treatment policies for chronic illnesses. Before applying any off-the-shelf reinforcement learning methods in this setting, we must first tackle a number of challenges. We outline some of these challenges and present methods for overcoming them. First, we describe a multiple imputation approach to overcome the problem of missing data. Second, we discuss the use of function approximation in the context of a highly variable observation set. Finally, we discuss approaches to summarizing the evidence in the data for recommending a particular action and quantifying the uncertainty around the Q-function of the recommended policy. We present the results of applying these methods to real clinical trial data of patients with schizophrenia.
PURPOSE Rapid increases in technology and data motivate the application of artificial intelligence (AI) to primary care, but no comprehensive review exists to guide these efforts. Our objective was to assess the nature and extent of the body of research on AI for primary care. METHODSWe performed a scoping review, searching 11 published or gray literature databases with terms pertaining to AI (eg, machine learning, bayes* network) and primary care (eg, general pract*, nurse). We performed title and abstract and then full-text screening using Covidence. Studies had to involve research, include both AI and primary care, and be published in English. We extracted data and summarized studies by 7 attributes: purpose(s); author appointment(s); primary care function(s); intended end user(s); health condition(s); geographic location of data source; and AI subfield(s). RESULTSOf 5,515 unique documents, 405 met eligibility criteria. The body of research focused on developing or modifying AI methods (66.7%) to support physician diagnostic or treatment recommendations (36.5% and 13.8%), for chronic conditions, using data from higher-income countries. Few studies (14.1%) had even a single author with a primary care appointment. The predominant AI subfields were supervised machine learning (40.0%) and expert systems (22.2%).CONCLUSIONS Research on AI for primary care is at an early stage of maturity. For the field to progress, more interdisciplinary research teams with end-user engagement and evaluation studies are needed. Ann Fam Med 2020;18:250-258. https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.