Efforts to identify meaningful functional imaging-based biomarkers are limited by the ability to reliably characterize inter-individual differences in human brain function. Although a growing number of connectomics-based measures are reported to have moderate to high test-retest reliability, the variability in data acquisition, experimental designs, and analytic methods precludes the ability to generalize results. The Consortium for Reliability and Reproducibility (CoRR) is working to address this challenge and establish test-retest reliability as a minimum standard for methods development in functional connectomics. Specifically, CoRR has aggregated 1,629 typical individuals’ resting state fMRI (rfMRI) data (5,093 rfMRI scans) from 18 international sites, and is openly sharing them via the International Data-sharing Neuroimaging Initiative (INDI). To allow researchers to generate various estimates of reliability and reproducibility, a variety of data acquisition procedures and experimental designs are included. Similarly, to enable users to assess the impact of commonly encountered artifacts (for example, motion) on characterizations of inter-individual variation, datasets of varying quality are included.
Although neural activity often reflects the processing of external inputs, intrinsic fluctuations in activity have been observed throughout the brain. These may relate to patterns of self-generated thought that can occur while not performing goal-driven tasks. To understand the relationship between self-generated mental activity and intrinsic neural fluctuations, we developed the New York Cognition Questionnaire (NYC-Q) to assess the content and form of an individual's experiences during the acquisition of resting-state fMRI data. The data were collected as a part of the Nathan Kline Rockland Enhanced sample. We decomposed NYC-Q scores using exploratory factor analysis and found that self-reported thoughts clustered into distinct dimensions of content (future related, past related, positive, negative, and social) and form (words, images, and specificity). We used these components to perform an individual difference analysis exploring how differences in the types of self-generated thoughts relate to whole brain measures of intrinsic brain activity (fractional amplitude of low frequency fluctuations, regional homogeneity, and degree centrality). We found patterns of self-generated thoughts related to changes that were distributed across a wide range of cortical areas. For example, individuals who reported greater imagery exhibited greater low frequency fluctuations in a region of perigenual cingulate cortex, a region that is known to participate in the so-called default-mode network. We also found certain forms of thought were associated with other areas, such as primary visual cortex, the insula, and the cerebellum. For example, individuals who reported greater future thought exhibited less homogeneous neural fluctuations in a region of lateral occipital cortex, a result that is consistent with the claim that particular types of self-generated thought depend on processes that are decoupled from sensory processes. These data provide evidence that self-generated thought is a heterogeneous category of experience and that studying its content can be helpful in understanding brain dynamics.
The brain is a complex dynamical system composed of many interacting sub-regions. Knowledge of how these interactions reconfigure over time is critical to a full understanding of the brain’s functional architecture, the neural basis of flexible cognition and behavior, and how neural systems are disrupted in psychiatric and neurological illness. The idea that we might be able to study neural and cognitive dynamics through analysis of neuroimaging data has catalyzed substantial interest in methods which seek to estimate moment-to-moment fluctuations in functional connectivity (often referred to as “dynamic” or time-varying connectivity; TVC). At the same time, debates have emerged regarding the application of TVC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive relevance of resting TVC. These and other unresolved issues complicate the interpretation of resting TVC findings and limit the insights which can be gained from this otherwise promising research area. This article reviews the current resting TVC literature in light of these issues. We introduce core concepts, define key terms, summarize current controversies and open questions, and present a forward-looking perspective on how resting TVC analyses can be rigorously applied to investigate a wide range of questions in cognitive and systems neuroscience.
Homotopy reflects the intrinsic functional architecture of the brain through synchronized spontaneous activity between corresponding bilateral regions, measured as voxel mirrored homotopic connectivity (VMHC). Hypercapnia is known to have clear impact on brain hemodynamics through vasodilation, but have unclear effect on neuronal activity. This study investigates the effect of hypercapnia on brain homotopy, achieved by breathing 5% carbon dioxide (CO2 ) gas mixture. A total of 14 healthy volunteers completed three resting state functional MRI (RS-fMRI) scans, the first and third under normocapnia and the second under hypercapnia. VMHC measures were calculated as the correlation between the BOLD signal of each voxel and its counterpart in the opposite hemisphere. Group analysis was performed between the hypercapnic and normocapnic VMHC maps. VMHC showed a diffused decrease in response to hypercapnia. Significant regional decreases in VMHC were observed in all anatomical lobes, except for the occipital lobe, in the following functional hierarchical subdivisions: the primary sensory-motor, unimodal, heteromodal, paralimbic, as well as in the following functional networks: ventral attention, somatomotor, default frontoparietal, and dorsal attention. Our observation that brain homotopy in RS-fMRI is affected by arterial CO2 levels suggests that caution should be used when comparing RS-fMRI data between healthy controls and patients with pulmonary diseases and unusual respiratory patterns such as sleep apnea or chronic obstructive pulmonary disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.