Trabeculae form the internal bony mesh work and provide strength to the bone; interconnectivity, overall density, and trabecular thickness are important measures of the integrity of the internal architecture. Such strength is achieved only gradually during ontogeny, whereby an increase in trabecular thickness precedes an increase in mineralization. Loss of bone mass later in life may be compensated for by thickening of the remaining trabeculae. These facts, and the role of trabeculae in mineral homeostasis, highlight the importance of investigating trabecular thickness within and between species. While nondestructive imaging techniques (i.e., mCT and MRI) are becoming increasingly popular, quantification of trabecular thickness using nondestructive techniques has proved difficult owing to limitations imposed by scanning parameters, uniform thresholding, and partial volume averaging. Here we present a computer application, which aims to overcome these problems. Validation is carried out against a phantom and against trabecular thickness measured in corresponding histological sections. Good agreement was found between these measurements. Furthermore, when trabecular thickness is recorded for modern human fetal ilia, a trend toward trabecular thickness increase is found and is in line with reports of ontogenetic morphometric changes using histological sections. However, there are discrepancies. These may in part be due to partial volume effects of obliquely oriented structures. More crucial, however, are problems inherent in histological sections, e.g., shrinkage and distortion, especially where differences in mineralization are concerned; this may affect biological interpretations. Anat Rec Part A, 288A: 982-988, 2006.2006 Wiley-Liss, Inc.
This pilot study explored whether the redirection of stress through trabeculae within morphologically constrained capitates provides information about habitual/positional behaviours unavailable from the study of external morphology alone. To assess this possibility, an experimental finite element approach was taken, whereby no attempt was made to reconstruct the actual magnitudes and loading conditions experienced by the capitates in vivo. Rather, this work addressed fundamental biological questions relating to bone plasticity, i.e. internal versus external bone morphology. The capitates of 7 species with different and – in the case of fossils – inferred locomotor behaviours were selected. Virtual models of capitates were created, scaled to the same size and subjected to the same theoretical load. In the first set of analyses, models were assigned the material properties of bone throughout, whereas in the second set, models were assigned 11 different material properties representing the trabecular architecture derived from high-resolution CT. Species with arboreal behaviours consistently redirected loads towards the ulnar aspect of the capitate when trabeculae were introduced, while terrestrial species, and the bipedal Homo, redirected stress towards the radial side. From these preliminary analyses, it is tentatively concluded that Australopithecus anamensis habitually engaged in arboreal behaviours, whereas Australopithecus afarensis did not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.