Tumor cell adhesion to the extracellular matrix is an important consideration in tumor metastasis. Recent results show that multiple adhesion-promoting domains for melanoma cells can be purified from proteolytic digests of fibronectin [McCarthy, J. B., Hagen, S. T., & Furcht, L. T. (1986) J. Cell Biol. 102, 179-188]. Monoclonal antibodies were generated against a tryptic/catheptic 33K heparin binding fragment of fibronectin derived from the carboxyl terminal of the A chain. This region contains a tumor cell adhesion-promoting domain(s). The amino-terminal sequence was determined for this fragment, as well as a tryptic 31K fragment which is located to the carboxyl-terminal side of the 33K heparin binding fragment in A chains of fibronectin. The partial sequence data demonstrate that arginyl-glycyl-aspartyl-serine (RGDS) or the related arginyl-glutamyl-aspartyl-valine (REDV) is not present in the 33K heparin binding fragment, confirming earlier results which demonstrated that cells adhere to this fragment by an RGDS-independent mechanism. Two monoclonal antibodies, termed AHB-1 and AHB-2, recognized epitopes common to heparin binding fragments derived from the carboxyl terminus of both the A and B chains of fibronectin. Monoclonal antibody AHB-2 inhibited melanoma adhesion to the 33K heparin binding fragment of fibronectin in a concentration-dependent manner, whereas monoclonal antibody AHB-1 had no effect on adhesion to this fragment. Neither monoclonal antibody inhibited adhesion to intact fibronectin. However, monoclonal AHB-2 potentiated the inhibitory effect of suboptimal levels of exogenous RGDS on cell adhesion to intact fibronectin. AHB-2 recognized an epitope common to both the A- and B-chain carboxyl-terminal heparin binding region of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.