Notch receptors function in highly conserved intercellular signalling pathways that direct cell-fate decisions, proliferation and apoptosis in metazoans. Fringe proteins can positively and negatively modulate the ability of Notch ligands to activate the Notch receptor. Here we establish the biochemical mechanism of Fringe action. Drosophila and mammalian Fringe proteins possess a fucose-specific beta1,3 N-acetylglucosaminyltransferase activity that initiates elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats of Notch. We obtained biological evidence that Fringe-dependent elongation of O-linked fucose on Notch modulates Notch signalling by using co-culture assays in mammalian cells and by expression of an enzymatically inactive Fringe mutant in Drosophila. The post-translational modification of Notch by Fringe represents a striking example of modulation of a signalling event by differential receptor glycosylation and identifies a mechanism that is likely to be relevant to other signalling pathways.
Fringe modulates Notch signaling resulting in the establishment of compartmental boundaries in developing organisms. Fringe is a 3N-acetylglucosaminyltransferase (3GlcNAcT) that transfers GlcNAc to O-fucose in epidermal growth factor-like repeats of Notch. Here we use five different Chinese hamster ovary cell glycosylation mutants to identify a key aspect of the mechanism of fringe action. Although the 3GlcNAcT activity of manic or lunatic fringe is shown to be necessary for inhibition of Jagged1-induced Notch signaling in a coculture assay, it is not sufficient. Fringe fails to inhibit Notch signaling if the disaccharide generated by fringe action, GlcNAc3Fuc, is not elongated. The trisaccharide, Gal4GlcNAc3Fuc, is the minimal O-fucose glycan to support fringe modulation of Notch signaling. Of six 4galactosyltrans-ferases (4GalT) in Chinese hamster ovary cells, only 4GalT-1 is required to add Gal to GlcNAc3Fuc, identifying 4GalT-1 as a new modulator of Notch signaling.
Fringe plays a key role in the specification of boundaries during development by modulating the ability of Notch ligands to activate Notch receptors. Fringe is a fucose-specific 1,3-N-acetylglucosaminyltransferase that modifies O-fucose moieties on the epidermal growth factor-like (EGF) repeats of Notch. To investigate how the change in sugar structure caused by Fringe modulates Notch activity, we have analyzed the sites of O-fucose and Fringe modification on mouse Notch1. The extracellular domain of Notch1 has 36 tandem EGF repeats, many of which are predicted to be modified with O-fucose. We recently proposed a broadened consensus sequence for O-fucose, C 2 X 3-5 (S/T)C 3 (where C 2 and C 3 represent the second and third conserved cysteines), significantly expanding the potential number of modification sites on Notch. Here we demonstrate that sites predicted using this broader consensus sequence are modified with O-fucose on mouse Notch1, and we present evidence suggesting that the consensus can be further refined to C 2 X 4 -5 (S/T)C 3 .In particular, we demonstrate that EGF 12, a portion of the ligand-binding site, is modified with O-fucose and that this site is evolutionarily conserved. We also show that endogenous Fringe proteins in Chinese hamster ovary cells (Lunatic fringe and Radical fringe) as well as exogenous Manic fringe modify O-fucose on many but not all EGF repeats of mouse Notch1. These findings suggest that the Fringes show a preference for O-fucose on some EGF repeats relative to others. This specificity appears to be encoded within the amino acid sequence of the individual EGF repeats. Interestingly, our results reveal that Manic fringe modifies O-fucose both at the ligand-binding site (EGF 12) and in the Abruptex region. These findings provide insight into potential mechanisms by which Fringe action on Notch receptors may influence both the affinity of Notch-ligand binding and cell-autonomous inhibition of Notch signaling by ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.