SignificanceProtozoal proteasome is a validated target for antimalarial drug development, but species selectivity of reported inhibitors is suboptimal. Here we identify inhibitors with improved selectivity for malaria proteasome β5 subunit over each active subunit of human proteasomes. These compounds kill the parasite in each stage of its life cycle. They interact synergistically with a β2 inhibitor and with artemisinin. Resistance to the β5 inhibitor arose through a point mutation in the nonproteolytic β6 subunit. The same mutation made the mutant strain more sensitive to a β2 inhibitor and less fit to withstand irradiation. These findings reveal complex interplay among proteasome subunits and introduce the prospect that combined inhibition of β2 and β5 subunits can afford synergy and thwart resistance.
IPTp selected for genotypes associated with decreased sensitivity to treatment regimens, but genotypes associated with clinically relevant DP resistance in Asia have not emerged in Uganda.
Jumonji domain-containing protein 3 (JMJD3/KDM6B) demethylates lysine 27 on histone H3 (H3K27me3), a repressive epigenetic mark controlling chromatin organization and cellular senescence. To better understand the functional consequences of JMJD3 its expression was investigated in brain tumor cells. Querying patient expression profile databases confirmed JMJD3 over-expression in high-grade glioma. Immunochemical staining of two glioma cell lines, U251 and U87, indicated intrinsic differences in JMJD3 expression levels that were reflected in changes in cell phenotype and variations associated with cellular senescence, including senescence-associated β-galactosidase (SA-β-gal) activity and the senescence associated secretory phenotype (SASP). Over-expressing wild type JMJD3 (JMJD3wt) activated SASP-associated genes, enhanced SA-βgal activity, and induced nuclear blebbing. Conversely, over-expression of a catalytically inactive dominant negative mutant JMJD3 (JMJD3mut) increased proliferation. In addition, a large number of transcripts were identified by RNA-seq as altered in JMJD3 over-expressing cells, including cancer- and inflammation-related transcripts as defined by IPA analysis. These results suggest that expression of the SASP in the context of cancer undermines normal tissue homeostasis and contributes to tumorigenesis and tumor progression. These studies are therapeutically relevant because inflammatory cytokines have been linked to homing of neural stem cells and other stem cells to tumor loci.
Dihydroartemisinin-piperaquine (DHA-PQ) is under study for intermittent preventive treatment during pregnancy (IPTp), but it may accelerate selection for drug resistance. Understanding the relationships between piperaquine concentration, prevention of parasitemia, and selection for decreased drug sensitivity can inform control policies and optimization of DHA-PQ dosing. Piperaquine concentrations, measures of parasitemia, and Plasmodium falciparum genotypes associated with decreased aminoquinoline sensitivity in Africa (pfmdr1 86Y, pfcrt 76T) were obtained from pregnant Ugandan women randomized to IPTp with sulfadoxine-pyrimethamine (SP) or DHA-PQ. Joint pharmacokinetic/pharmacodynamic models described relationships between piperaquine concentration and the probability of genotypes of interest using nonlinear mixed effects modeling. An increase in the piperaquine plasma concentration was associated with a log-linear decrease in risk of parasitemia. Our models predicted that higher median piperaquine concentrations would be required to provide 99% protection against mutant infections than against wild-type infections (pfmdr1: N86, 9.6 ng/ml; 86Y, 19.6 ng/ml; pfcrt: K76, 6.5 ng/ml; 76T, 19.6 ng/ml). Comparing monthly, weekly, and daily dosing, daily low-dose DHA-PQ was predicted to result in the fewest infections and the fewest mutant infections per 1,000 pregnancies (predicted mutant infections for pfmdr1 86Y: SP monthly, 607; DHA-PQ monthly, 198; DHA-PQ daily, 1; for pfcrt 76T: SP monthly, 1,564; DHA-PQ monthly, 283; DHA-PQ daily, 1). Our models predict that higher piperaquine concentrations are needed to prevent infections with the pfmdr1/pfcrt mutant compared to those with wild-type parasites and that, despite selection for mutants by DHA-PQ, the overall burden of mutant infections is lower for IPTp with DHA-PQ than for IPTp with SP. (This study has been registered at ClinicalTrials.gov under identifier NCT02282293.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.