Forest cover change directly affects biodiversity, the global carbon budget, and ecosystem function. Within Latin American and the Caribbean region (LAC), many studies have documented extensive deforestation, but there are also many local studies reporting forest recovery. These contrasting dynamics have been largely attributed to demographic and socio-economic change. For example, local population change due to migration can stimulate forest recovery, while the increasing global demand for food can drive agriculture expansion. However, as no analysis has simultaneously evaluated deforestation and reforestation from the municipal to continental scale, we lack a comprehensive assessment of the spatial distribution of these processes. We overcame this limitation by producing wall-to-wall, annual maps of change in woody vegetation and other land-cover classes between 2001 and 2010 for each of the 16,050 municipalities in LAC, and we used nonparametric Random Forest regression analyses to determine which environmental or population variables best explained the variation in woody vegetation change. Woody vegetation change was dominated by deforestation (À541,835 km 2 ), particularly in the moist forest, dry forest, and savannas/shrublands biomes in South America. Extensive areas also recovered woody vegetation (+362,430 km 2 ), particularly in regions too dry or too steep for modern agriculture. Deforestation in moist forests tended to occur in lowland areas with low population density, but woody cover change was not related to municipality-scale population change. These results emphasize the importance of quantitating deforestation and reforestation at multiple spatial scales and linking these changes with global drivers such as the global demand for food.Abstract in Spanish is available in the online version of this article.
SUMMARYPolicies play a pivotal role in determining land change. Uruguay has been subject to first a rise and then decline in plantations of exotic trees as a result of internal Uruguayan government policies, and a recent substantial increase in soybean cultivation that may be attributed to Argentinean policies. To properly assess the relationship between land change and changes in land-use policies, vegetation change for Uruguay from 2001 to 2009 was mapped using MODIS imagery. Between 2001 and 2009, the area covered by exotic tree plantations declined by 1435 km2, and 34 681 km2 of herbaceous cover was converted to agricultural cover, mainly soybean cultivation. Uruguay and Argentina implemented land-use policy changes following the 2002 economic collapse. Rapid increase in exotic tree plantations, mainly in the 1990s, may have been stimulated by Uruguayan government incentives, while their recent decline coincides with the subsequent elimination of these incentives. The rapid increase in soybean production may be largely attributed to recent tax regimes in Argentina and lack of export tax in Uruguay combining to provide a favourable financial climate for Uruguayan soybean cultivation. Soybean cultivation is predicted to continue to expand in Uruguay, while exotic tree plantations should also increase in importance owing to the recent establishment of the world's largest pulp mill.
Land change in the Greater Antilles differs markedly among countries because of varying socioeconomic histories and global influences. We assessed land change between 2001 and 2010 in municipalities (second administrative units) of Cuba, Dominican Republic, Haiti, Jamaica, and Puerto Rico. Our analysis used annual land-use/land-cover maps derived from MODIS satellite imagery to model linear change in woody vegetation, mixed-woody/plantations and agriculture/herbaceous vegetation. Using this approach, we focused on municipalities with significant change (p ≤ 0.05). Between 2001 and 2010, the Greater Antilles gained 801 km2 of woody vegetation. This increase was mainly due to the return of woody vegetation in Cuba, and smaller increases in Puerto Rico and the Dominican Republic. Despite relatively similar environments, the factors associated with these changes varied greatly between countries. In Puerto Rico, Dominican Republic, and Jamaica, agriculture declined while mixed-woody vegetation increased, mostly in montane regions. In contrast, Cuba experienced an extensive decline in sugarcane plantations, which resulted in the spread of an invasive woody shrub species and the increase in woody vegetation in areas of high agricultural value. In Haiti, the growing population, fuelwood consumption, and increase in agriculture contributed to woody vegetation loss; however, woody vegetation loss was accompanied with a significant increase in the mixed woody and plantations class. Most regional analyses often treated the Greater Antilles as a homogeneous unit; our results suggest that historical and socio-economic differences among countries are crucial for understanding the variation in present day land change dynamics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.