During the past decade, the U.S. Department of Energy (DOE), through the Atmospheric Radiation Measurement (ARM) Program, has supported the development of several millimeter-wavelength radars for the study of clouds. This effort has culminated in the development and construction of a 35-GHz radar system by the Environmental Technology Laboratory (ETL) of the National Oceanic and Atmospheric Administration (NOAA). Radar systems based on the NOAA ETL design are now operating at the DOE ARM Southern Great Plains central facility in central Oklahoma and the DOE ARM North Slope of Alaska site near Barrow, Alaska. Operational systems are expected to come online within the next year at the DOE ARM tropical western Pacific sites located at Manus, Papua New Guinea, and Nauru. In order for these radars to detect the full range of atmospheric hydrometeors, specific modes of operation must be implemented on them that are tuned to accurately detect the reflectivities of specific types of hydrometeors. The set of four operational modes that are currently in use on these radars are presented and discussed. The characteristics of the data produced by these modes of operation are also presented in order to illustrate the nature of the cloud products that are, and will be, derived from them on a continuous basis.
A single nanoparticle (NP) mass spectrometry method was used to measure sublimation rates as a function of nanoparticle temperature (TNP) for a number of individual graphite and graphene NPs. Initially, the NP sublimation rates were ~400 times faster than that for bulk graphite, and there were large NP-to-NP variations. Over time, the rate slowed substantially, though remaining well above the bulk rate. The initial activation energies (Eas) were correspondingly low and doubled as a few monolayer's worth of material were sublimed from the surfaces. The high initial rates and low Eas are attributed to large numbers of edge and other low coordination sites on the NP surfaces, and the changes are attributed to atomic-scale "smoothing" of the surface by preferential sublimation of the less stable sites. The emissivity of the NPs also changed after heating, most frequently increasing. The emissivity and sublimation rates were anti-correlated, leading to the conclusion that high densities of low-coordination sites on the NP surfaces enhances sublimation but suppresses emissivity
Results are presented for thermal emission from individual trapped carbon nanoparticles (NPs) in the temperature range from ~1000 to ~2100 K. We explore the effects on the magnitude and wavelength dependence of the emissivity, ϵ(λ), of the NP size and charge, and of the type of carbon material, including graphite, graphene, diamond, carbon black, and carbon dots. In addition, it is found that heating the NPs, particularly to temperatures above ~1900 K, results in significant changes in the emission properties, attributed to changes in the distribution of surface and defect sites caused by annealing and sublimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.