Crystallography has advanced our understanding of G proteincoupled receptors, but low expression levels and instability in solution have limited structural insights to very few selected members of this large protein family. Using neurotensin receptor 1 (NTR1) as a proof of principle, we show that two directed evolution technologies that we recently developed have the potential to overcome these problems. We purified three neurotensin-bound NTR1 variants from Escherichia coli and determined their X-ray structures at up to 2.75 Å resolution using vapor diffusion crystallization experiments. A crystallized construct was pharmacologically characterized and exhibited ligand-dependent signaling, internalization, and wild-type-like agonist and antagonist affinities. Our structures are fully consistent with all biochemically defined ligand-contacting residues, and they represent an inactive NTR1 state at the cytosolic side. They exhibit significant differences to a previously determined NTR1 structure (Protein Data Bank ID code 4GRV) in the ligand-binding pocket and by the presence of the amphipathic helix 8. A comparison of helix 8 stability determinants between NTR1 and other crystallized G protein-coupled receptors suggests that the occupancy of the canonical position of the amphipathic helix is reduced to various extents in many receptors, and we have elucidated the sequence determinants for a stable helix 8. Our analysis also provides a structural rationale for the long-known effects of C-terminal palmitoylation reactions on G protein-coupled receptor signaling, receptor maturation, and desensitization. membrane proteins | protein stability | protein engineering | detergents N eurotensin is a 13-amino-acid peptide, which plays important roles in the pathogenesis of Parkinson's disease, schizophrenia, antinociception, and hypothermia and in lung cancer progression (1-4). It is expressed throughout the central nervous system and in the gut, where it binds to at least three different neurotensin receptors (NTRs). NTR1 and NTR2 are class A G protein-coupled receptors (GPCRs) (5, 6), whereas NTR3 belongs to the sortilin family. Most of the effects of neurotensin are mediated through NTR1, where the peptide acts as an agonist, leading to GDP/GTP exchange within heterotrimeric G proteins and subsequently to the activation of phospholipase C and adenylyl cyclase, which produce second messengers in the cytosol (5, 7). Activated NTR1 is rapidly phosphorylated and internalizes by a β-arrestin-and clathrin-mediated process (8), which is crucial for desensitizing the receptor (9). Several lines of evidence suggest that internalization is also linked to G proteinindependent NTR1 signaling (10, 11). To improve our mechanistic understanding of NTR1 and to gain additional insight into GPCR features such as helix 8 (H8), we were interested in obtaining a structure of this receptor in a physiologically relevant state.To date, by far the most successful strategy for GPCR structure determination requires the replacement of the intracel...
The relaxin and insulin-like peptide 3 receptors, LGR7 and LGR8, respectively, are unique members of the leucine-rich repeat-containing G-protein-coupled receptor (LGR) family, because they possess an N-terminal motif with homology to the low density lipoprotein class A (LDLa) modules. By characterizing several LGR7 and LGR8 splice variants, we have revealed that the LDLa module directs ligand-activated cAMP signaling. The LGR8-short variant encodes an LGR8 receptor lacking the LDLa module, whereas LGR7-truncate, LGR7-truncate-2, and LGR7-truncate-3 all encode truncated secreted proteins retaining the LGR7 LDLa module. LGR8-short and an engineered LGR7 variant missing its LDLa module, LGR7-short, bound to their respective ligands with high affinity but lost their ability to signal via stimulation of intracellular cAMP accumulation. Conversely, secreted LGR7-truncate protein with the LDLa module was able to block relaxin-induced LGR7 cAMP signaling and did so without compromising the ability of LGR7 to bind to relaxin or be expressed on the cell membrane. Although the LDLa module of LGR7 was N-glycosylated at position Asn-14, an LGR7 N14Q mutant retained relaxin binding affinity and cAMP signaling, implying that glycosylation is not essential for optimal LDLa function. Using real-time PCR, the expression of mouse LGR7-truncate was detected to be high in, and specific to, the uterus of pregnant mice. The differential expression and evolutionary conservation of LGR7-truncate further suggests that it may also play an important role in vivo. This study highlights the essential role of the LDLa module in LGR7 and LGR8 function and introduces a novel model of GPCR regulation.Relaxin was initially named for its ability to relax the pubic symphysis in pregnant guinea pigs at parturition (1). Since then relaxin has been found to be involved in many physiological processes, including cervical ripening (2-5), inhibition of myometrial contractions in some mammals (6 -8), uterine growth during pregnancy (9, 10), and nipple development for lactation (11-13). Most of the actions of relaxin are a direct result of its ability to stimulate the breakdown and remodeling of collagen fibers by inhibiting collagen type I and III synthesis and promoting matrix metalloproteinase expression and activation (14 -16). Most mammalian species have relaxin; however, due to a gene duplication event, humans possess two relaxin genes, encoding H1 relaxin and H2 relaxin, with H2 relaxin being the major stored and circulating form (reviewed in Ref. 17). In pig, mouse, rat, and human, the primary source of relaxin is the corpus luteum (reviewed in Ref. 18), highlighting that the most pronounced roles of relaxin occur during pregnancy.The relaxin receptor is a GPCR 3 most recently named the RXFP1 receptor (relaxin family peptide receptor 1) (19), however, in this report it will be referred to by its original name, leucine-rich repeat-containing GPCR 7 (LGR7) (20). LGR7 has been highly conserved in vertebrate species throughout evolution and is related...
Baker, Gordon et al. present the first international case series describing the neurodevelopmental disorder associated with Synaptotagmin 1 (SYT1) de novo missense mutations. Key features include movement abnormalities, severe intellectual disability, and hallmark EEG alterations. Expression of patients’ SYT1 mutations in mouse neurons disturbs presynaptic vesicle dynamics in a mutation-specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.