We study the uniaxial compressive behavior of disordered colloidal free-standing micropillars composed of a bidisperse mixture of 3-and 6-μm polystyrene particles. Mechanical annealing of confined pillars enables variation of the packing fraction across the phase space of colloidal glasses. The measured normalized strengths and elastic moduli of the annealed freestanding micropillars span almost three orders of magnitude despite similar plastic morphology governed by shear banding. We measure a robust correlation between ultimate strengths and elastic constants that is invariant to relative humidity, implying a critical strain of ∼0.01 that is strikingly similar to that observed in metallic glasses (MGs) [Johnson WL, Samwer K (2005) Phys Rev Lett 95:195501] and suggestive of a universal mode of cooperative plastic deformation. We estimate the characteristic strain of the underlying cooperative plastic event by considering the energy necessary to create an Eshelby-like ellipsoidal inclusion in an elastic matrix. We find that the characteristic strain is similar to that found in experiments and simulations of other disordered solids with distinct bonding and particle sizes, suggesting a universal criterion for the elastic to plastic transition in glassy materials with the capacity for finite plastic flow. In an ideal, defect-free system, the relationship between a material's elastic constants and yield strength is indicative of the underlying plastic event that generates macroscopic yielding. For the case of a crystalline solid, Frenkel predicted the ideal yield stress by estimating the energy necessary to cooperatively shear pristine crystallographic planes. The result estimates that the ideal shear strength, τ y;ideal , scales linearly with the shear modulus, μ, as τ y;ideal = μ=2π (1). This simple, yet striking, prediction implies a singular critical shear strain for yielding, irrespective of the material. Experimental strengths of crystalline metals, however, are found to fall orders of magnitude short of Frenkel's ideal strength, suggestive of plasticity generated by mechanisms other than cooperative slip. In real bulk crystals, microstructural defects, such as dislocations, grain boundaries, and surfaces, become plastically active at stresses well below τ y;ideal , implying a transition to a far less cooperative plastic deformation mechanism. Controlling the character and number density of these defects mediates the strength of crystals; for instance, the Hall-Petch relationship for polycrystals (2, 3) states that τ y ∼ d −1=2 , where τ y is the yield strength and d is the grain size (thus controlling the fraction of planar defects), and Taylor strengthening (4) predicts τ y ∼ ρ 1=2 , where ρ is the dislocation density. This ability to tailor material strength is a reflection of the large catalog of plastic events found in crystals and the associated broad range of energies necessary for their operation. In such defected crystals, the highly cooperative shear mechanism that defines the intrinsic ideal str...
We present a new approach for studying the uniaxial compressive behavior of colloidal micropillars as a function of the initial defect population, pillar and colloid dimension, and particle-particle interaction. Pillars composed of nanometer scale particles develop cracks during drying, while pillars composed of micron scale particles dry crack-free. We subject the free-standing pillars, with diameters of 580 μm and 900 μm, to uniaxial compression experiments using a custom-built micromechanical testing apparatus. In pillars with pre-existing cracks, compression activates the macroscopic defects, leading to fracture and stochastic mechanical response as a result of the flaw distribution. Pillars that dry crack-free fail by shear bands that initiate near the punch face. While macroscopically identical, pillar-to-pillar mechanical response varies significantly. We attribute the disparate response to varying structure and environmental conditions. To isolate the effects of environment, we performed controlled experiments over a range of relative humidity levels (<2% to >98% RH). The level of atmospheric humidity affects particle-particle cohesion and friction, resulting in dramatically different mechanical responses. We discuss the results in the context of underlying particle rearrangements leading to mesoscopic shear localization and examine comparisons with atomic disordered systems such as metallic glasses.
We report on the use of quantitative in situ microcompression experiments in a scanning electron microscope to systematically investigate the effect of self-ion irradiation damage on the full plastic response of h1 11i Ni. In addition to the well-known irradiation-induced increases in the yield and flow strengths with increasing dose, we measure substantial changes in plastic flow intermittency behavior, manifested as stress drops accompanying energy releases as the driven material transits critical states. At low irradiation doses, the magnitude of stress drops reduces relative to the unirradiated material and plastic slip proceeds on multiple slip systems, leading to quasi-homogeneous plastic flow. In contrast, highly irradiated specimens exhibit pronounced shear localization on parallel slip planes, which we ascribe to the onset of defect free channels normally seen in bulk irradiated materials. Our in situ testing system and approach allows for a quantitative study of the energy release and dynamics associated with defect free channel formation and subsequent localization. This study provides fundamental insight into the nature of interactions between mobile dislocations and irradiation-mediated and damage-dependent defect structures.
Polymer adsorption at the solid/liquid interface depends not only on the chemical composition of the polymer but also on the specific placement of the monomers along the polymer sequence. However, challenges in designing polymers with well-controlled sequences have limited explorations into the role of polymer sequence on adsorption behavior to molecular simulations. Here, we demonstrate how the sequence control offered by polypeptide synthesis can be utilized to study the effects small changes in polymer sequence have on polymer adsorption behavior at the solid/liquid interface. Through a combination of quartz crystal microbalance with dissipation monitoring and total internal reflection ellipsometry, we study the adsorption behavior of three polypeptides, consisting of 90% lysine and 10% cysteine, onto a gold surface. We find different mechanisms are responsible for the adsorption of polypeptides and the resulting conformation on the surface. The initial adsorption of the polypeptides is driven by electrostatic interactions between the polylysine and the gold surface. Once adsorbed, the cysteine undergoes a thiol–Au reaction with the surface, altering the conformation of the polymer layer. Our findings suggest the conformation of the polypeptide layer is dependent on the placement of the cysteines within the sequence; polypeptide chains with evenly spaced cysteine groups adopt a more tightly bound “train” conformation as compared to polypeptides with closely grouped cysteine groups. We envision that the methodologies presented here to study sequence specific adsorption behaviors using polypeptides could be a valuable tool to complement molecular simulations studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.