P-Glycoprotein (Pgp) is one of the best characterized ABC transporters, often involved in the multidrug-resistance phenotype overexpressed by several cancer cell lines. Experimental studies contributed to important knowledge concerning substrate polyspecificity, efflux mechanism, and drug-binding sites. This information is, however, scattered through different perspectives, not existing a unifying model for the knowledge available for this transporter. Using a previously refined structure of murine Pgp, three putative drug-binding sites were hereby characterized by means of molecular docking. The modulator site (M-site) is characterized by cross interactions between both Pgp halves herein defined for the first time, having an important role in impairing conformational changes leading to substrate efflux. Two other binding sites, located next to the inner leaflet of the lipid bilayer, were identified as the substrate-binding H and R sites by matching docking and experimental results. A new classification model with the ability to discriminate substrates from modulators is also proposed, integrating a vast number of theoretical and experimental data.
P-Glycoprotein (P-gp) is often involved in multidrug resistance (MDR) to the pharmacological action of a wide number of anticancer agents. In this article, a series of molecular dynamics simulations of murine's P-gp were developed, elucidating the importance of the lipid membrane and linker sequence in the protein structure stability. The behavior of several molecules inside the drug-binding pocket revealed a striking difference between substrates or modulators, and motion patterns were identified that could be correlated with conformational alterations due to substrate binding, corresponding to the initial step in the efflux mechanism. Only one "entrance gate" to the drug-binding pocket was found and, in the presence of a substrate, leads to changes in the motion patterns of the transporter into an efflux-like movement.
The phytochemical study of Euphorbia piscatoria yielded jolkinol D (1) in a large amount, whose derivatization gave rise to 12 ester derivatives (2-13) and hydrolysis to compound 14. The in vitro modulation of P-gp of compounds 1-14 was evaluated through a combination of transport and chemosensitivity assays, using the L5178 mouse T lymphoma cell line transfected with the human MDR1 gene. Apart from jolkinol D, all derivatives (2-14) showed potential as MDR reversal agents. In this small library of novel bioactive macrocyclic lathyrane diterpene derivatives, designed to evaluate structure-activity relationships essential in overcoming multidrug resistance (MDR), some correlations between MDR reversal and molecular weight, accessible solvent areas, and octanol/water partition coefficient were identified that can contribute to the development of new selective P-gp reversal agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.