SummaryBackgroundTuberculosis incidence in the UK has risen in the past decade. Disease control depends on epidemiological data, which can be difficult to obtain. Whole-genome sequencing can detect microevolution within Mycobacterium tuberculosis strains. We aimed to estimate the genetic diversity of related M tuberculosis strains in the UK Midlands and to investigate how this measurement might be used to investigate community outbreaks.MethodsIn a retrospective observational study, we used Illumina technology to sequence M tuberculosis genomes from an archive of frozen cultures. We characterised isolates into four groups: cross-sectional, longitudinal, household, and community. We measured pairwise nucleotide differences within hosts and between hosts in household outbreaks and estimated the rate of change in DNA sequences. We used the findings to interpret network diagrams constructed from 11 community clusters derived from mycobacterial interspersed repetitive-unit–variable-number tandem-repeat data.FindingsWe sequenced 390 separate isolates from 254 patients, including representatives from all five major lineages of M tuberculosis. The estimated rate of change in DNA sequences was 0·5 single nucleotide polymorphisms (SNPs) per genome per year (95% CI 0·3–0·7) in longitudinal isolates from 30 individuals and 25 families. Divergence is rarely higher than five SNPs in 3 years. 109 (96%) of 114 paired isolates from individuals and households differed by five or fewer SNPs. More than five SNPs separated isolates from none of 69 epidemiologically linked patients, two (15%) of 13 possibly linked patients, and 13 (17%) of 75 epidemiologically unlinked patients (three-way comparison exact p<0·0001). Genetic trees and clinical and epidemiological data suggest that super-spreaders were present in two community clusters.InterpretationWhole-genome sequencing can delineate outbreaks of tuberculosis and allows inference about direction of transmission between cases. The technique could identify super-spreaders and predict the existence of undiagnosed cases, potentially leading to early treatment of infectious patients and their contacts.FundingMedical Research Council, Wellcome Trust, National Institute for Health Research, and the Health Protection Agency.
Recombination is an important evolutionary force in bacteria, but it remains challenging to reconstruct the imports that occurred in the ancestry of a genomic sample. Here we present ClonalFrameML, which uses maximum likelihood inference to simultaneously detect recombination in bacterial genomes and account for it in phylogenetic reconstruction. ClonalFrameML can analyse hundreds of genomes in a matter of hours, and we demonstrate its usefulness on simulated and real datasets. We find evidence for recombination hotspots associated with mobile elements in Clostridium difficile ST6 and a previously undescribed 310kb chromosomal replacement in Staphylococcus aureus ST582. ClonalFrameML is freely available at http://clonalframeml.googlecode.com/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.