Massive Open Online Massive Open Online Courses (MOOCs) have been transitioning slowly from being completely open and without clear recognition in universities or industry, to private settings through the emergence of Small and Massive Private Online Courses (SPOCs and MPOCs). Courses in these new formats are often for credit and have clear market value through the acquisition of competencies and skills. However, the endemic issue of academic dishonesty remains lingering and generating untrustworthiness regarding what students did to complete these courses. In this case study, we focus on SPOCs with academic recognition developed at the University of Cauca in Colombia and hosted in their Open edX instance called Selene Unicauca. We have developed a learning analytics algorithm to detect dishonest students based on submission time and exam responses providing as output a number of indicators that can be easily used to identify students. Our results in two SPOCs suggest that 17% of the students that interacted enough with the courses have performed academic dishonest actions, and that 100% of the students that were dishonest passed the courses, compared to 62% for the rest of students. Contrary to what other studies have found, in this study, dishonest students were similarly or even more active with the courseware than the rest, and we hypothesize that these might be working groups taking the course seriously and solving exams together to achieve a higher grade. With MOOC-based degrees and SPOCs for credit becoming the norm in distance learning, we believe that if this issue is not tackled properly, it might endanger the future of the reliability and value of online learning credentials.
Background: Small private online courses (SPOCs) are one of the strategies to introduce the massive open online courses (MOOCs) within the university environment and to have these courses validates for academic credit. However, numerous researchers have highlighted that academic dishonesty is greatly facilitated by the online context in which SPOCs are offered. And while numerous algorithms have already been proposed, no research has been performed on how to transfer this information to instructors, so that they can intervene and decrease the prevalence of this issue.Objectives: In this article, we present a qualitative evaluation of a tool for detecting and monitoring students suspected of academic dishonesty in SPOCs in Selene, a Colombian instance of Open edX.
Methods:The evaluation was carried out through semi-structured interviews with four instructors who taught SPOCs with academic recognition at the University of Cauca.Results: The evaluation results indicated that participants found the dashboard reliable and appropriate to detect academic dishonesty behaviours in order to intervene in these cases.Implications: But interventions are difficult to systematise, need an institutional policy, and there is uncertainty about whether these interventions can actually contribute to decreasing academic dishonesty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.