S and A.A. performed and supervised in vitro experiments in cell/astrocyte cultures and ex vivo analysis of brain tissue; A.B.G, C.I. and P.G.S. performed behavioral experiments and surgical procedures in mice; E.R. and M.G. provided some CB1-KO mice to the group of J.P.B.; D.A and A.P. performed electrophysiological experiments not shown in the manuscript; M.V. and F.J.K performed mouse perfusion and immunohistochemistry experiments; A.C. and L.B. produced some of the viral constructs used (e.g. Syn-mitoCAT); I.B.R, N.P., S.A. and P.G. performed and supervised electron microscopy experiments; M.L.L.R. provided pharmacological tools (HU-Biot); C.J., N.D and L.P provided specific viral constructs to modulate the MCT-2 transporter; C.J. and G.B. provided data and viral vectors regarding mouse retro-orbital injections; B.L and P.V.P. provided important conceptual ideas; A.K.B.S performed in vivo NMR experiments.
Neurotransmission unavoidably increases mitochondrial reactive oxygen species. However, the intrinsic antioxidant defense of neurons is weak and hence the mechanism whereby these cells are physiologically protected against oxidative damage is unknown. Here we found that the antioxidant defense of neurons is repressed owing to the continuous protein destabilization of the master antioxidant transcriptional activator, nuclear factor-erythroid 2-related factor-2 (Nrf2). By contrast, Nrf2 is highly stable in neighbor astrocytes explaining their robust antioxidant defense and resistance against oxidative stress. We also show that subtle and persistent stimulation of N-methyl-D-aspartate receptors (NMDAR) in astrocytes, through a mechanism not requiring extracellular Ca 2+ influx, upregulates a signal transduction pathway involving phospholipase C-mediated endoplasmic reticulum release of Ca 2+ and protein kinase Cδ activation. Active protein kinase Cδ promotes, by phosphorylation, the stabilization of p35, a cyclin-dependent kinase-5 (Cdk5) cofactor. Active p35/Cdk5 complex in the cytosol phosphorylates Nrf2 at Thr 395 , Ser 433 and Thr 439 that is sufficient to promote Nrf2 translocation to the nucleus and induce the expression of antioxidant genes. Furthermore, this Cdk5-Nrf2 transduction pathway boosts glutathione metabolism in astrocytes efficiently protecting closely spaced neurons against oxidative damage. Thus, intercellular communication through NMDAR couples neurotransmission with neuronal survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.