Spin qubits are considered to be among the most promising candidates for building a quantum processor 1 . Group IV hole spin qubits have moved into the focus of interest due to the ease of operation and compatibility with Si technology 2;3;4;5;6 . In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-ofplane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot 7;8 . We observe electrically controlled X and Z-rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1 µs which we extend beyond 15 µs with echo techniques. These results show that Ge hole singlet triplet qubits outperform their electronic Si and GaAs based counterparts in speed and dephasing time, respectively. In addition, their rotation frequency and coherence time are on par with Ge single spin qubits, but they can be operated at much lower fields underlining their potential for on chip integration with superconducting technologies.
Solid-state qubit manipulation and read-out fidelities are reaching fault-tolerance, but quantum error correction requires millions of physical qubits and thus a scalable quantum computer architecture. To solve signal-line bandwidth and fan-out problems, microwave sources required for qubit manipulation might be embedded close to the qubit chip, typically operating at temperatures below 4 K. Here, we perform the first low temperature measurements of a 130 nm BiCMOS based SiGe voltage controlled oscillator. The device maintains its functionality from 300 K to 4 K. We determined the dependence of frequency and output power on temperature and magnetic field up to 5 T and measured the temperature influence on noise performance. While the output power tends to increase, the frequency shift is 3 % for temperature and 0.02 % for the field dependence, respectively, both relevant for highly coherent spin qubit applications. We observe no improvement on output noise, but increased output flickering.
CONTENTS
Radio-frequency measurements could satisfy DiVincenzo's readout criterion in future large-scale solid-state quantum processors, as they allow for high bandwidths and frequency multiplexing. However, the scalability potential of this readout technique can only be leveraged if quantum device tuning is performed using exclusively radio-frequency measurements i.e. without resorting to current measurements. We demonstrate an algorithm that automatically tunes double quantum dots using only radio-frequency reflectometry. Exploiting the high bandwidth of radio-frequency measurements, the tuning was completed within a few minutes without prior knowledge about the device architecture. Our results show that it is possible to eliminate the need for transport measurements for quantum dot tuning, paving the way for more scalable device architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.