In this work, we consider the solution of fluid-structure interaction (FSI) problems using a monolithic approach for the coupling between fluid and solid subproblems. The coupling of both equations is realized by means of the arbitrary Lagrangian-Eulerian framework and a nonlinear harmonic mesh motion model. Monolithic approaches require the solution of large ill-conditioned linear systems of algebraic equations at every Newton step. Direct solvers tend to use too much memory even for a relatively small number of degrees of freedom and, in addition, exhibit superlinear growth in arithmetic complexity. Thus, iterative solvers are the only viable option. To ensure convergence of iterative methods within a reasonable amount of iterations, good and, at the same time, cheap preconditioners have to be developed. We study physics-based block preconditioners, which are derived from the block-LDU factorization of the FSI Jacobian, and their performance on distributed memory parallel computers in terms of two-and three-dimensional test cases permitting large deformations. KEYWORDS fluid-structure interaction, monolithic formulation, parallel solvers, physics-based block preconditioners Int J Numer Methods Eng. 2019;117:623-643.wileyonlinelibrary.com/journal/nme
Phase-field fracture models lead to variational problems that can be written as a coupled variational equality and inequality system. Numerically, such problems can be treated with Galerkin finite elements and primal-dual active set methods. Specifically, low-order and high-order finite elements may be employed, where, for the latter, only few studies exist to date. The most time-consuming part in the discrete version of the primal-dual active set (semi-smooth Newton) algorithm consists in the solutions of changing linear systems arising at each semi-smooth Newton step. We propose a new parallel matrix-free monolithic multigrid preconditioner for these systems. We provide two numerical tests, and discuss the performance of the parallel solver proposed in the paper. Furthermore, we compare our new preconditioner with a block-AMG preconditioner available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.