Non-intrusive load monitoring (NILM) is a modern and still expanding technique, helping to understand fundamental energy consumption patterns and appliance characteristics. Appliance event detection is an elementary step in the NILM pipeline. Unfortunately, several types of appliances (e.g., switching mode power supply (SMPS) or multi-state) are known to challenge state-of-theart event detection systems due to their noisy consumption profiles. Classical rule-based event detection system become infeasible and complex for these appliances. By stepping away from distinct event definitions, we can learn from a consumer-configured event model to differentiate between relevant and irrelevant event transients.We introduce a boosting oriented adaptive training, that uses false positives from the initial training area to reduce the number of false positives on the test area substantially. The results show a false positive decrease by more than a factor of eight on a dataset that has a strong focus on SMPS-driven appliances. To obtain a stable event detection system, we applied several experiments on different parameters to measure its performance. These experiments include the evaluation of six event features from the spectral and time domain, different types of feature space normalization to eliminate undesired feature weighting, the conventional and adaptive training, and two common classifiers with its optimal parameter settings. The evaluations are performed on two publicly available energy datasets with high sampling rates: BLUED and BLOND-50.
Electrical energy consumption has been an ongoing research area since the coming of smart homes and Internet of Things devices. Consumption characteristics and usages profiles are directly influenced by building occupants and their interaction with electrical appliances. Extracted information from these data can be used to conserve energy and increase user comfort levels. Data analysis together with machine learning models can be utilized to extract valuable information for the benefit of occupants themselves, power plants, and grid operators. Public energy datasets provide a scientific foundation to develop and benchmark these algorithms and techniques. With datasets exceeding tens of terabytes, we present a novel study of five whole-building energy datasets with high sampling rates, their signal entropy, and how a well-calibrated measurement can have a significant effect on the overall storage requirements. We show that some datasets do not fully utilize the available measurement precision, therefore leaving potential accuracy and space savings untapped. We benchmark a comprehensive list of 365 file formats, transparent data transformations, and lossless compression algorithms. The primary goal is to reduce the overall dataset size while maintaining an easy-to-use file format and access API. We show that with careful selection of file format and encoding scheme, we can reduce the size of some datasets by up to 73%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.