Several researches and technologies on polymer recycling have been driven and justified by the uncontrolled and crescent polymer waste generation in the world. Herein, a critical and concise review on the recent and well-established recycling practices for polymer waste is presented, taking into account not only thermoplastics (or plastics) but also thermosets and elastomers. Moreover, sorting and characterization techniques for polymer waste recycling are detailed and their importance is discussed. An in-depth analysis of the literature indicated that novel and advanced recycling methods for polymeric waste (PW) present difficulties to be applied in the industrial sector, mainly the scientific innovations in the chemical recycling area. In the current scenario, new challenges for the recycling sector are linked to highly contaminated PW from electrical, electronic, and medical products.
The aim of our study was to produce and characterize poly-ε-caprolactone (PCL) nanospheres containing essential oils from Zanthoxylum riedelianum fruit and to evaluate their stability gains as well as their insecticidal and deterrent activities against whitefly (Bemisia tabaci). The PCL nanospheres exhibited a homogeneous spherical morphology, with particle diameters between 106.7 nm and 129.2 nm, pH of approximately 6, zeta potential (ZP) lower than −19.0 mV and encapsulation efficiency higher than 98%. Only 43% of the nanoencapsulated essential oil (NSEO) was degraded in response to ultraviolet light, whereas the essential oil (EO) degraded by 76% over the same period. In a free-choice test, the NSEO and EO reduced the number of whitefly eggs by approximately 70%. NSEO and EO at 1.5% killed 82.87% and 91.23% of 2nd-instar nymphs of whitefly, respectively. Although NSEO displayed lower insecticidal activity, it offers a greater advantage over the free EO, due to protection conferred by polymer against photodegradation. Therefore, its usage may optimize the maintenance of essential oils in the field through photoprotection and controlled release. Our results suggest that the EO of Z. riedelianum fruit can be used for B. tabaci management strategy; nevertheless, the benefits of NSEO require further evaluation at the field level.
Industries and the scientific community currently focus on creating new ways to recycle and to reuse polymer waste that leads to serious socio-environmental risks. However, the quality of recycled polyethylenes depends strongly on their purity degree, but the distinction between Low Density Polyethylene (LDPE) and High Density Polyethylene (HDPE) by a fast and consistently good methodology is still an unsolved issue for the current recycling processes. In this study, confocal Raman spectroscopy and Competitive Adaptive Reweighted Sampling-Partial Least Squares (CARS-PLS) linear regression have been successfully applied to quantify the concentration of LDPE/HDPE blends. The effects of several regression parameters (pretreatment method, Monte Carlo sampling runs, k-fold and maximal number of latent variables for cross-validation) on the CARS-PLS model training and prediction performance were analyzed. The CARS-PLS-based models show root-mean-squared prediction error of 4.06-8.87 wt% of LDPE for the whole composition range of HDPE/LDPE blend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.