T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19. NATURE IMMUNOLOGY | www.nature.com/natureimmunology Articles NATuRE ImmuNOLOgy evidence that antibody responses are short-lived and can even cause or aggravate virus-associated lung pathology 16,17. With regard to SARS-CoV-2, very recent studies 18-20 described CD4 + and CD8 + T cell responses to viral peptide megapools in donors that had recovered from COVID-19 and individuals not exposed to SARS-CoV-2, the latter being indicative of potential T cell cross-reactivity 21,22. The exact viral epitopes that mediate these T cell responses against SARS-CoV-2, however, were not identified and characterized in detail in these studies, but are prerequisite (1) to delineate the role of post-infectious and heterologous T cell immunity in COVID-19, (2) for establishing diagnostic tools to identify SARS-CoV-2 immunity and, most importantly, (3) to define target structures for the development of SARS-CoV-2-specific vaccines and immunotherapies. In this study, we define SARS-CoV-2-specific and cross-reactive CD4 + and CD8 + T cell epitopes in a large collection of SARS-CoV-2 convalescent as well as nonexposed individuals and their relevance for immunity and the course of COVID-19 disease. Results Identification of SARS-CoV-2-derived peptides. A new prediction and selection workflow, based on the integration of the algorithms SYFPEITHI and NetMHCpan, identified 1,739 and 1,591 auspicious SARS-CoV-2-derived HLA class I-and HLA-DR-binding peptides across all ten viral open-reading frames (ORFs) (Fig. 1a and Extended Data Fig. 1a,b). Predictions were performed for the ten and six most common HLA class I
SARS-CoV-2 is evolving with mutations in the receptor binding domain (RBD) being of particular concern. It is important to know how much cross-protection is offered between strains following vaccination or infection. Here, we obtain serum and saliva samples from groups of vaccinated (Pfizer BNT-162b2), infected and uninfected individuals and characterize the antibody response to RBD mutant strains. Vaccinated individuals have a robust humoral response after the second dose and have high IgG antibody titers in the saliva. Antibody responses however show considerable differences in binding to RBD mutants of emerging variants of concern and substantial reduction in RBD binding and neutralization is observed against a patient-isolated South African variant. Taken together our data reinforce the importance of the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies and high antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant further highlights the importance of surveillance strategies to detect new variants and targeting these in future vaccines.
The humoral immune response to SARS-CoV-2 is a benchmark for immunity and detailed analysis is required to understand the manifestation and progression of COVID-19, monitor seroconversion within the general population, and support vaccine development. The majority of currently available commercial serological assays only quantify the SARS-CoV-2 antibody response against individual antigens, limiting our understanding of the immune response. To overcome this, we have developed a multiplex immunoassay (MultiCoV-Ab) including spike and nucleocapsid proteins of SARS-CoV-2 and the endemic human coronaviruses. Compared to three broadly used commercial in vitro diagnostic tests, our MultiCoV-Ab achieves a higher sensitivity and specificity when analyzing a well-characterized sample set of SARS-CoV-2 infected and uninfected individuals. We find a high response against endemic coronaviruses in our sample set, but no consistent cross-reactive IgG response patterns against SARS-CoV-2. Here we show a robust, high-content-enabled, antigen-saving multiplex assay suited to both monitoring vaccination studies and facilitating epidemiologic screenings for humoral immunity towards pandemic and endemic coronaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.