A series of dose-response studies was conducted to evaluate the clinical safety, pharmacokinetics, and metabolic effects of L-glutamine administered to humans. Initial studies in normal individuals evaluated the short-term response to oral loads of glutamine at doses of 0, 0.1, and 0.3 g/kg. A dose-related increase in blood glutamine occurred after oral loading and elevation of amino acids known to be end products of glutamine metabolism occurred (including alanine, citrulline, and arginine). No evidence of clinical toxicity or generation of toxic metabolites (ammonia and glutamate) was observed. Glutamine was infused intravenously in normal subjects over 4 hr at doses of 0.0125 and 0.025 g/kg/hr. In addition, glutamine was evaluated as a component of parenteral nutrition solutions (0.285 and 0.570 g/kg/day) administered for 5 days to normal subjects. Intravenous administration of glutamine was well tolerated without untoward clinical or biochemical effects. Subsequent studies in patients receiving glutamine-enriched parenteral nutrition for several weeks confirmed the clinical safety of this approach in a catabolic patient population. In addition, nitrogen retention appeared to be enhanced when glutamine was administered at a dose of 0.570 g/kg/day in a balanced nutritional solution providing adequate calories (145% of basal) and protein (1.5 g/kg/day). Nitrogen balance in patients receiving lower doses of glutamine (0.285 g/kg/day) was similar to that in patients receiving standard formulations. Further controlled clinical trials of the metabolic efficacy, tolerance, and dose response of glutamine in other patient groups are necessary to determine the appropriate use of glutamine enrichment of nutrient solutions.
This study characterizes the transmigration of enteroinvasive Salmonella typhi in vitro, using a human intestinal epithelial cell line as a model of small intestinal epithelium. C2BBe cells, a subclone of CACO-2 with a highly differentiated enterocytic phenotype, were grown to maturity on Transwell filters. S. typhi Ty2 and the vaccine strain, Ty21a, the S. typhi mutant X7344 and parent strain SB130, and S. typhimurium 5771 in logarithmic phase were introduced to the upper chamber of the filter units. Numbers of bacteria in the lower chamber, TER and permeability of the monolayer to mannitol were measured over time. Monolayers were examined by light, electron and confocal microscopy to determine the pathway of bacterial transmigration, and intracellular bacteria were estimated by gentamicin assay. Epithelial cell injury was quantified by light microscopy. S. typhi transmigrated earlier and in larger numbers than S. typhimurium, inducing marked changes in electrical resistance and permeability. Unlike S. typhimurium, S. typhi selected epithelial cells in small number and caused their death and extrusion from the monolayers leaving holes through which S. typhi transmigrated. Ty2 consistently transmigrated in larger numbers and with more injury to monolayers than Ty21a. S. typhi crosses the monolayers of C2BBe cells by a paracellular route in contrast to the transcellular pathway described for other Salmonellae. This may be related to the unique pathophysiology of S. typhi infection and the restricted host specificity of this pathogen. In these assays the vaccine strain, Ty21a, is slightly less invasive than its parent, though more invasive than S. typhimurium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.