The most promising astrophysical sources of kHz gravitational waves (GWs) are the inspiral and merger of binary neutron star(NS)/black hole systems. Maximizing the scientific return of a GW detection will require identifying a coincident electromagnetic (EM) counterpart. One of the most likely sources of isotropic EM emission from compact object mergers is a supernova‐like transient powered by the radioactive decay of heavy elements synthesized in ejecta from the merger. We present the first calculations of the optical transients from compact object mergers that self‐consistently determine the radioactive heating by means of a nuclear reaction network; using this heating rate, we model the light curve with a one‐dimensional Monte Carlo radiation transfer calculation. For an ejecta mass ∼10−2 M⊙ (10−3 M⊙) the resulting light‐curve peaks on a time‐scale ∼1 d at a V‐band luminosity νLν∼ 3 × 1041 (1041) erg s−1[MV=−15(−14)]; this corresponds to an effective ‘f’ parameter ∼3 × 10−6 in the Li–Paczynski toy model. We argue that these results are relatively insensitive to uncertainties in the relevant nuclear physics and to the precise early‐time dynamics and ejecta composition. Since NS merger transients peak at a luminosity that is a factor of ∼103 higher than a typical nova, we propose naming these events ‘kilo‐novae’. Because of the rapid evolution and low luminosity of NS merger transients, EM counterpart searches triggered by GW detections will require close collaboration between the GW and astronomical communities. NS merger transients may also be detectable following a short‐duration gamma‐ray burst or ‘blindly’ with present or upcoming optical transient surveys. Because the emission produced by NS merger ejecta is powered by the formation of rare r‐process elements, current optical transient surveys can directly constrain the unknown origin of the heaviest elements in the Universe.
The cosmic origin of elements heavier than iron has long been uncertain. Theoretical modelling shows that the matter that is expelled in the violent merger of two neutron stars can assemble into heavy elements such as gold and platinum in a process known as rapid neutron capture (r-process) nucleosynthesis. The radioactive decay of isotopes of the heavy elements is predicted to power a distinctive thermal glow (a 'kilonova'). The discovery of an electromagnetic counterpart to the gravitational-wave source GW170817 represents the first opportunity to detect and scrutinize a sample of freshly synthesized r-process elements. Here we report models that predict the electromagnetic emission of kilonovae in detail and enable the mass, velocity and composition of ejecta to be derived from observations. We compare the models to the optical and infrared radiation associated with the GW170817 event to argue that the observed source is a kilonova. We infer the presence of two distinct components of ejecta, one composed primarily of light (atomic mass number less than 140) and one of heavy (atomic mass number greater than 140) r-process elements. The ejected mass and a merger rate inferred from GW170817 imply that such mergers are a dominant mode of r-process production in the Universe.
We show that energy deposited into an expanding supernova remnant by a highly magnetic (B ∼ 5 × 10 14 G) neutron star spinning at an initial period of P i ≈ 2 − 20 ms can substantially brighten the light curve. For magnetars with parameters in this range, the rotational energy is released on a timescale of days to weeks, which is comparable to the effective diffusion time through the supernova remnant. The late time energy injection can then be radiated without suffering overwhelming adiabatic expansion losses. The magnetar input also produces a central bubble which sweeps ejecta into an internal dense shell, resulting in a prolonged period of nearly constant photospheric velocity in the observed spectra. We derive analytic expressions for the light curve rise time and peak luminosity as a function of B, P i and the properties of the supernova ejecta that allow for direct inferences about the underlying magnetar in bright supernovae. We perform numerical radiation hydrodynamical calculations of a few specific instances and compare the resulting light curves to observed events. Magnetar activity is likely to impact more than a few percent of all core collapse supernovae, and may naturally explain some of the brightest events ever seen (e.g., SN 2005ap and SN 2008es) at L 10 44 ergs s −1 .
On 17 August 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer detected gravitational waves (GWs) emanating from a binary neutron star merger, GW170817. Nearly simultaneously, the Fermi and INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) telescopes detected a gamma-ray transient, GRB 170817A. At 10.9 hours after the GW trigger, we discovered a transient and fading optical source, Swope Supernova Survey 2017a (SSS17a), coincident with GW170817. SSS17a is located in NGC 4993, an S0 galaxy at a distance of 40 megaparsecs. The precise location of GW170817 provides an opportunity to probe the nature of these cataclysmic events by combining electromagnetic and GW observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.