Many teleost fishes with no apparent modifications for life on land are able to produce effective terrestrial locomotor behaviors, including a ballistic behavior called the "tail-flip" jump. Cyprinodontiformes (killifishes, Teleostei: Atherinomorpha) that live at the water's edge vary in morphology and inclination to emerge onto land. Do fish with an amphibious predisposition have extensive modification of the propulsive region of the body when compared to fully aquatic relatives? We quantified body shape and anatomy of the caudal peduncle and tail (the propulsive organ on land and in water) in 11 cyprinodontiform species and two outgroup taxa (Atherinomorpha). We hypothesized that amphibious species would have longer, "shallower" bodies (larger body fineness ratios), deeper (proportionally larger) caudal peduncles, and more robust bones in the tail fin (larger ossified area of the hypural/epural bones) to facilitate locomotor movements on land. We found no evidence of convergence in body shape or skeletal anatomy among species known to make voluntary sojourns onto land. In fact, deep-bodied species, shallow-bodied species, and species with intermediate morphologies all are able to emerge from the water and move on land. It is possible that there are as-yet-undocumented subtle soft-tissue (muscle, tendon, and ligament) modifications that enhance terrestrial locomotor performance in species known to spend large periods of time on land. However, it is also possible that extreme anatomical changes are not required for aquatic cyprinodontiform species to produce effective locomotor movements when they emerge out of the water and move across the land. Anat Rec, 303:53-64, 2020.
Synopsis In fishes, the skin and scales provide a physical barrier to the external environment and must withstand direct physical insult from biotic and abiotic features of the habitat. Flatfishes likely rely heavily on their scales for physical defense because they rest directly on the substrate. Using a flatfish model, we asked: what are the effects of scale type and scale morphology on puncture force resistance? We also asked: are there morphological and functional differences between the eyed and blind sides in flatfishes and do the morphological and functional properties of scales vary with organism size? Using a large size range of three species of Pleuronectid flatfish (Isopsetta isolepis, n = 10; Parophrys vetulus, n = 10; and Platichthys stellatus, n = 12), we measured the force required to puncture the integument using a sample of skin+scales taken from the eyed and blind side of each individual. We also measured the diameter, area, and thickness of the scales of each individual. Scaling relationships (body length vs. variable of interest) were derived for each species and compared with a priori expectations of geometric similarity. We found no relationship between scale type and puncture resistance and no differences in morphological parameters or puncture resistance between the eyed and blind side within a given species. These flatfish species do vary in their ability to withstand puncture forces; however, once scale thickness is taken into account, species differences disappear. Thus, the ability of a flatfish to withstand mechanical insult from puncture-forces varies depending on the thickness of the scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.