Although many works in the database community use open data in their experimental evaluation, repeating the empirical results of previous works remains a challenge. This holds true even if the source code or binaries of the tested algorithms are available. In this paper, we argue that providing access to the raw, original datasets is not enough. Real-world datasets are rarely processed without modification. Instead, the data is adapted to the needs of the experimental evaluation in the data preparation process. We showcase that the details of the data preparation process matter and subtle differences during data conversion can have a large impact on the outcome of runtime results. We introduce a data reproducibility model, identify three levels of data reproducibility, report about our own experience, and exemplify our best practices.
Given a query tree Q, the top-k subtree similarity query retrieves the k subtrees in a large document tree T that are closest to Q in terms of tree edit distance. The classical solution scans the entire document, which is slow. The state-of-theart approach precomputes an index to reduce the query time. However, the index is large (quadratic in the document size), building the index is expensive, updates are not supported, and data-specific tuning is required. We present a scalable solution for the top-k subtree similarity problem that does not assume specific data types, nor does it require any tuning. The key idea is to process promising subtrees first. A subtree is promising if it shares many labels with the query. We develop a new technique based on inverted lists that efficiently retrieves subtrees in the required order and supports incremental updates of the document. To achieve linear space, we avoid full list materialization but build relevant parts of a list on the fly. In an extensive empirical evaluation on synthetic and realworld data, our technique consistently outperforms the stateof-the-art index w.r.t. memory usage, indexing time, and the number of candidates that must be verified. In terms of query time, we clearly outperform the state of the art and achieve runtime improvements of up to four orders of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.